Math, asked by shailsharma200319, 6 hours ago

Please solve the question

y =  \sqrt{tanx +  \sqrt{tanx +  \sqrt{tanx +  -  -  -  -  \infty } } }

Find dy/dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{tanx +  \sqrt{tanx +  \sqrt{tanx +  -  -  -  - \infty } } }

So, it can be rewritten as

\rm :\longmapsto\:y =  \sqrt{tanx + y}

On squaring both sides ,we get

\rm :\longmapsto\: {y}^{2} = tanx + y

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} {y}^{2} = \dfrac{d}{dx}(tanx + y)

\rm :\longmapsto\:2y\dfrac{dy}{dx} = \dfrac{d}{dx}y + \dfrac{d}{dx}tanx

\rm :\longmapsto\:2y\dfrac{dy}{dx} = \dfrac{dy}{dx}+  {sec}^{2}x

\rm :\longmapsto\:\dfrac{dy}{dx}(2y - 1)=  {sec}^{2}x

 \\ \rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  \frac{ {sec}^{2}x}{2y - 1}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Method

\rm :\longmapsto\:y =  \sqrt{f(x) + \sqrt{f(x) +  \sqrt{f(x) +  -  -  -  \infty } }  }

then

 \\ \rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  \frac{ f'(x)}{2y - 1}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{tanx +  \sqrt{tanx +  \sqrt{tanx +  -  -  -  - \infty } } }

So, it can be rewritten as

\rm :\longmapsto\:y =  \sqrt{tanx + y}

On squaring both sides ,we get

\rm :\longmapsto\: {y}^{2} = tanx + y

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} {y}^{2} = \dfrac{d}{dx}(tanx + y)

\rm :\longmapsto\:2y\dfrac{dy}{dx} = \dfrac{d}{dx}y + \dfrac{d}{dx}tanx

\rm :\longmapsto\:2y\dfrac{dy}{dx} = \dfrac{dy}{dx}+  {sec}^{2}x

\rm :\longmapsto\:\dfrac{dy}{dx}(2y - 1)=  {sec}^{2}x

 \\ \rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  \frac{ {sec}^{2}x}{2y - 1}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Method

\rm :\longmapsto\:y =  \sqrt{f(x) + \sqrt{f(x) +  \sqrt{f(x) +  -  -  -  \infty } }  }

then

 \\ \rm\implies \:\boxed{\tt{ \dfrac{dy}{dx} =  \frac{ f'(x)}{2y - 1}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions