please solve the questions in the attachment. (asap)
Answers
Question :-
Simplify
- (a+3b)³ + (a-3b)³
- (a-b)³ + (b-c)³ + (c-a)³
Factories
- 64p³ + 27q³ + 144p²q + 108pq²
- 8a³ - 27b³ - 36a²b + 54ab²
- 125p³ - 27q³
- 343x³ + 64y³
Solution :-
Simplify
1. (a+3b)³ + (a-3b)³
By applying identity → a³+b³ = (a+b)(a²-ab+b²)
= (a+3b+a-3b) ((a+3b)² - (a+3b)(a-3b) + (a-3b)²)
Applying Identities → (a+b)² = a²+b²+2ab
Applying Identities → (a+b)² = a²+b²+2ab(a-b)² = a²+b²-2ab and a²-b² = (a+b)(a-b)
= 2a(a²+9b²+6ab - (a²-9b²) + a²+9b²-6ab)
= 2a(a²+a²+9b²+9b²-a²+9b²+6ab-6ab)
= 2a(2a²-a²+27b²)
= 2a(a²+27b²)
2. (a-b)³ + (b-c)³ + (c-a)³
if x = (a-b) y = (b-c) z = (c-a)
Consider
x + y + z = (a-b) + (b-c) + (c-a) = 0
=> x³ + y³ + z³ = 3xyz
=> (a-b)³ + (b-c)³ + (c-a)³ = 3(a-b)(b-c)(c-a)
Factories
1. 64p³ + 27q³ + 144p²q + 108pq²
Applying identity → (a+b)³= a³+b³+3ab(a+b)
= (4p)³ + (3q)³ + 3×4p×3q(4p+3q)
= (4p+3q)³
= (4p+3q)(4p+3q)(4p+3q)
2. 8a³ - 27b³ - 36a²b + 54ab²
Applying identity → (a-b)³ = a³ - b³ -3ab(a-b)
= (2a)³ - (3b)³ - 3×2a×3b(2a-3b)
= (2a-3b)³
= (2a-3b)(2a-3b)(2a-3b)
3. 125p³ - 27q³
Applying identity → a³ - b³ = (a-b)(a²+ab+b²)
= (5p)³ - (3q)³
= (5p-3q)((5p)² + 5p×3q + (3q)²)
= (5p-3q)(25p²+15pq+9q²)
4. 343x³ + 64y³
Applying identity → a³+b³ = (a+b)(a²-ab+b²)
= (7x)³ + (4y)³
= (7x+4y)((7x)²-7x×4y+(4y)²)
= (7x+4y)(49x²-28xy+16y²)