Math, asked by Anupamkumar4553, 9 months ago

please solve the right method
one answer ka jabab dene par 7 thanks aor pura answer ka jabab dene par 21 thanks plus mark as Brainliest and follow

Attachments:

Answers

Answered by Delta13
5

Question 1:

Given :- x + y = 4 and xy = 2

Find the value of x² + y²

Solution 1:

We will use the identity (a+b)² = a² + b² +2ab

Squaring (x + y =4)

=> (x + y)² = (4)²

=> x² + y² +2xy = 16

=> x² + y² +2(2) = 16 [value of xy is given]

=> x² + y² + 4 = 16

=> x² + y² = 16-4

=> x² + y² = 12

Question 2:

If  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 18,

find x +  \frac{1}{x}  =  {?}

Answer 2:

Again we will use the same identity (above mentioned)

 \left(x +  \frac{1}{x}  \right) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times \cancel{ x }\times  \frac{1}{ \cancel{x}}

We will put the value of x² + 1/x²

 =  >  \left(x +  \frac{1}{x}  \right)^{2}  = 18 + 2

 =  >  \left (x +  \frac{1}{x} \right) ^{2}  = 20

 =  > x +  \frac{1}{x}  =  \sqrt{20}

 =  > x +  \frac{1}{x}  = 2 \sqrt{5}

Question 3:

If x +  \frac{1}{x}  = 12,

findx -  \frac{1}{x}  =  {?}

Answer 3:

Squaring x + 1/x = 12

 =  > \left(x +  \frac{1}{x}  \right) {}^{2}  = (12) {}^{2}

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }   + 2( \cancel{x})( \frac{1}{ \cancel{x}} ) = 144

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 144 - 2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 142

Now we will square  \left(x -  \frac{1}{x}  \right) {}^{2}

 =  > \left(x -  \frac{1}{x}  \right) {}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

x will cancel out

Substituting the value of  {x}^{2}  +  \frac{1}{ {x}^{2} }

 =  > \left(x -  \frac{1}{x}  \right) {}^{2}  = 142 - 2

 =  > \left(x -  \frac{1}{x}  \right) {}^{2}  = 140

 =  > x -  \frac{1}{x}  =  \sqrt{140}

 =  > x -  \frac{1}{x}  = 2 \sqrt{35}

Similar questions