Math, asked by snehasardar023, 6 hours ago

please solve the sum​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{ {x}^{2} }{ {(x + 1)}^{2} (x + 2)}

Let we first resolve this in to partial fraction.

Let assume that

\rm :\longmapsto\: \dfrac{ {x}^{2} }{ {(x + 1)}^{2} (x + 2)} = \dfrac{a}{x + 1}  + \dfrac{b}{ {(x + 1)}^{2} }  + \dfrac{c}{x + 2}  -  -  - (1)

On taking LCM, we get

\rm :\longmapsto\: {x}^{2} = a(x + 1)(x + 2) + b(x + 2) + c {(x + 1)}^{2}

On substituting x = - 1, we get

\rm :\longmapsto\: {( - 1)}^{2} = b( - 1 + 2)

\bf\implies \:b = 1

On substituting x = - 2, we get

\rm :\longmapsto\: {( - 2)}^{2} = c( - 2 + 1) {}^{2}

\rm :\longmapsto\:4 = c {( - 1)}^{2}

\bf\implies \:c = 4

On substituting x = 0, we get

\rm :\longmapsto\: {0}^{2} = a(0 + 1)(0 + 2) + b(0 + 2) + c {(0 + 1)}^{2}

\rm :\longmapsto\:0 = 2a + 2b + c

On substituting the values of b and c, we get

\rm :\longmapsto\:0 = 2a + 2 + 4

\rm :\longmapsto\:0 = 2a + 6

\rm :\longmapsto\:2a =  - 6

\bf\implies \:a =  -  \: 3

On substituting the values of a, b and c in equation (1), we get

\rm :\longmapsto\: \dfrac{ {x}^{2} }{ {(x + 1)}^{2} (x + 2)} = \dfrac{ - 3}{x + 1}  + \dfrac{1}{ {(x + 1)}^{2} }  + \dfrac{4}{x + 2}

So,

\bf\implies \: y = \dfrac{ - 3}{x + 1}  + \dfrac{1}{ {(x + 1)}^{2} }  + \dfrac{4}{x + 2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y = - 3\dfrac{d}{dx} \dfrac{1}{x + 1}  +\dfrac{d}{dx} \dfrac{1}{ {(x + 1)}^{2} }  +4\dfrac{d}{dx} \dfrac{1}{x + 2}

We know,

 \red{\boxed{ \bf{ \dfrac{d}{dx} \frac{1}{ {x}^{n} }  =  \frac{ - n}{ {x}^{n + 1} }}}}

So, using this result, we get

\rm :\longmapsto\: \dfrac{dy}{dx} = \dfrac{( - 3)( - 1)}{ {(x + 1)}^{2} } +  \dfrac{( - 2)}{ {(x + 1)}^{3} }   + \dfrac{4( - 1)}{ {(x + 2)}^{2} }

can be rewritten as

\rm :\longmapsto\: \dfrac{dy}{dx} = \dfrac{3}{ {(x + 1)}^{2} }  -  \dfrac{2}{ {(x + 1)}^{3} } - \dfrac{4}{ {(x + 2)}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}\dfrac{dy}{dx} =\dfrac{d}{dx} \dfrac{3}{ {(x + 1)}^{2} }  - \dfrac{d}{dx} \dfrac{2}{ {(x + 1)}^{3} } -\dfrac{d}{dx} \dfrac{4}{ {(x + 2)}^{2} }

\rm :\longmapsto\: \dfrac{d^{2} y}{dx ^{2} } = \dfrac{3( - 2)}{ {(x + 1)}^{3} }  -  \dfrac{2( - 3)}{ {(x + 1)}^{4} } - \dfrac{4( - 2)}{ {(x + 2)}^{3} }

\rm :\longmapsto\: \dfrac{d^{2} y}{dx ^{2} } = \dfrac{ - 6}{ {(x + 1)}^{3} } +  \dfrac{6}{ {(x + 1)}^{4} } + \dfrac{8}{ {(x + 2)}^{3} }

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {a}^{x} =  {a}^{x}loga}}

Similar questions