Math, asked by Anonymous, 20 days ago

Please solve these all questions in less explanation. (6 Questions)

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-32}}

\rm \: y =  {\bigg( {2x}^{4} +  {3x}^{3} - 5x + 6\bigg)}^{  - \dfrac{1}{3} }  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{dy}{dx} =  -  \frac{1}{3}  {\bigg( {2x}^{4} +  {3x}^{3} - 5x + 6\bigg)}^{  - \dfrac{1}{3}  - 1}\dfrac{d}{dx}({2x}^{4} +  {3x}^{3} - 5x + 6)  \\

\rm \: \dfrac{dy}{dx} =  -  \frac{1}{3}  {\bigg( {2x}^{4} +  {3x}^{3} - 5x + 6\bigg)}^{  - \dfrac{4}{3}}({8x}^{3} +  {9x}^{2} - 5)  \\

So, option (a) is correct.

\large\underline{\sf{Solution-33}}

\rm \: y = log[ \sqrt{x - 1} -  \sqrt{x + 1}] \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{dy}{dx} = \frac{1}{ \sqrt{x - 1}  -  \sqrt{x + 1} }\dfrac{d}{dx} [ \sqrt{x - 1} -  \sqrt{x + 1}] \\

\rm \: \dfrac{dy}{dx} = \frac{1}{ \sqrt{x - 1}  -  \sqrt{x + 1} }\bigg(\dfrac{1}{2 \sqrt{x - 1} }  - \dfrac{1}{2 \sqrt{x + 1} }  \bigg)  \\

\rm \: \dfrac{dy}{dx} = \frac{1}{ \sqrt{x - 1}  -  \sqrt{x + 1} }\bigg( \dfrac{ \sqrt{x + 1}  -  \sqrt{x - 1} }{2 \sqrt{x + 1} \sqrt{x + 1}  }  \bigg)  \\

\rm \: \dfrac{dy}{dx} =  - \frac{1}{ \sqrt{x - 1}  -  \sqrt{x + 1} }\bigg( \dfrac{ \sqrt{x  - 1}  - \sqrt{x  +  1} }{2 \sqrt{ {x}^{2}   - 1}  }  \bigg)  \\

\rm \: \dfrac{dy}{dx} =  -  \dfrac{ 1 }{2 \sqrt{ {x}^{2}   - 1}  }   \\

\rm \: \dfrac{dy}{dx} =  -  \dfrac{ 1 }{2} {\bigg( {x}^{2} - 1 \bigg) }^{ - \dfrac{1}{2} }    \\

So, option (b) is correct.

\large\underline{\sf{Solution-34}}

\rm \: y = log \sqrt{x +  \sqrt{ {x}^{2}  +  {a}^{2} } }  \\

can be rewritten as

\rm \: y =  \frac{1}{2} \:  log[x +  \sqrt{ {x}^{2}  +  {a}^{2}}]  \\

On differentiating both sides w. r. t. x,

\rm \: \dfrac{dy}{dx} =  \frac{1}{2(x +  \sqrt{ {x}^{2}  +  {a}^{2} }) }\dfrac{d}{dx}[x +  \sqrt{ {x}^{2}  +  {a}^{2}}]  \\

\rm \: \dfrac{dy}{dx} =  \frac{1}{2(x +  \sqrt{ {x}^{2}  +  {a}^{2} }) }\bigg[1 +   \frac{1}{2\sqrt{ {x}^{2}  +  {a}^{2}}}  \times 2x\bigg]  \\

\rm \: \dfrac{dy}{dx} =  \frac{1}{2(x +  \sqrt{ {x}^{2}  +  {a}^{2} }) }\bigg[1 +   \frac{x}{\sqrt{ {x}^{2}  +  {a}^{2}}}\bigg]  \\

\rm \: \dfrac{dy}{dx} =  \frac{1}{2(x +  \sqrt{ {x}^{2}  +  {a}^{2} }) }\bigg[ \frac{\sqrt{ {x}^{2}  +  {a}^{2}} + x}{\sqrt{ {x}^{2}  +  {a}^{2}}}\bigg]  \\

\rm \: \dfrac{dy}{dx} =  \frac{1}{2\sqrt{ {x}^{2}  +  {a}^{2}}}  \\

\rm \: \dfrac{dy}{dx} = \dfrac{ 1 }{2} {\bigg( {x}^{2} +  {a}^{2}  \bigg) }^{ - \dfrac{1}{2} }    \\

So, option (a) is correct

\large\underline{\sf{Solution-35}}

\rm \: x = \frac{3at}{1 +  {t}^{3} }   \\

\rm \: \dfrac{dx}{dt} = 3a \: \frac{(1 +  {t}^{3}).1 - t( {3t}^{2} )}{(1 +  {t}^{3})^{2} }   \\

\rm \: \dfrac{dx}{dt} = 3a \: \frac{1 +  {t}^{3} - {3t}^{3}}{(1 +  {t}^{3})^{2} }   \\

\rm \: \dfrac{dx}{dt} =  \: \frac{3a(1 - {2t}^{3})}{(1 +  {t}^{3})^{2} }   \\

Now,

\rm \: y = \frac{3a {t}^{2} }{1 +  {t}^{3} }   \\

\rm \: \dfrac{dy}{dt} = 3a \: \frac{(1 +  {t}^{3}). {2t}  -  {t}^{2} ( {3t}^{2} )}{(1 +  {t}^{3})^{2} }   \\

\rm \: \dfrac{dy}{dt} = 3a \: \frac{2t +  2{t}^{4} - 3 {t}^{4}}{(1 +  {t}^{3})^{2} }   \\

\rm \: \dfrac{dy}{dt} = \: \frac{3a(2t -  {t}^{4})}{(1 +  {t}^{3})^{2} }   \\

So,

\rm \: \dfrac{dy}{dx} = \dfrac{dy}{dt} \div \dfrac{dx}{dt} \\

\rm \: \dfrac{dy}{dx} =  \frac{2t -  {t}^{4} }{1 - {2t}^{3} }  \\

So, option (a) is correct.

\large\underline{\sf{Solution-36}}

\rm \: y = log\bigg( {e}^{3x} {\bigg(5x - 3 \bigg) }^{\dfrac{1}{3} } {\bigg(4x + 2\bigg) }^{ - \dfrac{1}{3} }   \bigg)  \\

\rm \: y = 3x + \dfrac{1}{3}log(5x - 3) -  \dfrac{1}{3}log(4x + 2) \\

\rm \: \dfrac{dy}{dx} = 3 + \dfrac{1}{3(5x - 3)} \times 5 -  \dfrac{1}{3(4x + 2)} \times 4 \\

\rm \: \dfrac{dy}{dx} = 3 + \frac{1}{3}  \bigg(\dfrac{5}{(5x - 3)}  -  \dfrac{4}{(4x + 2)}\bigg) \\

So, option (a) is correct.

\large\underline{\sf{Solution-38}}

\rm \:  {x}^{y} =  {e}^{x - y}  \\

\rm \:  log{x}^{y} = log {e}^{x - y}  \\

\rm \: ylogx = x - y

\rm \: ylogx + y = x \\

\rm \: y(logx + 1) = x \\

\rm \: y =  \frac{x}{1 + logx}  \\

\rm \: \dfrac{dy}{dx} =  \frac{(logx + 1).1 - x \times  \dfrac{1}{x} }{(1 + logx) ^{2} }  \\

\rm \: \dfrac{dy}{dx} =  \frac{logx + 1 - 1 }{(1 + logx) ^{2} }  \\

\rm \: \dfrac{dy}{dx} =  \frac{logx }{(1 + logx) ^{2} }  \\

So, option (b) is correct

Answered by souhardya51
2

Answer:

32.(a)

33.(b)

34.(a)

35.(a)

36.(a)

37.(c)

38.(b)

Step-by-step explanation:

Hope it helps

Similar questions