Math, asked by Merrissa15, 9 months ago

Please solve these linear in equations.........​

Attachments:

Answers

Answered by shadowsabers03
1

(i)

\quad

\displaystyle\longrightarrow\sf {\dfrac {x}{2}+5\leq\dfrac {x}{3}+6}

\quad

\displaystyle\longrightarrow\sf {\dfrac {x}{2}+5-\dfrac {x}{3}-6\leq0}

\quad

\displaystyle\longrightarrow\sf {\dfrac {x}{2}-\dfrac {x}{3}-1\leq0}

\quad

\displaystyle\longrightarrow\sf {\dfrac {x}{2}-\dfrac {x}{3}\leq1}

\quad

\displaystyle\longrightarrow\sf {\dfrac {3x-2x}{2\times 3}\leq1}

\quad

\displaystyle\longrightarrow\sf {\dfrac {x}{6}\leq1}

\quad

\displaystyle\longrightarrow\sf {x\leq6}

\quad

Since \displaystyle\sf {x} is a positive odd integer,

\quad

\displaystyle\large\longrightarrow\sf {\underline {\underline {x\in\{1,\ 3,\ 5\}}}}

\quad

(ii)

\quad

\displaystyle\longrightarrow\sf {\dfrac {2x+3}{3}\geq\dfrac {3x-1}{4}}

\quad

\displaystyle\longrightarrow\sf {\dfrac {2x+3}{3}-\dfrac {3x-1}{4}\geq0}

\quad

\displaystyle\longrightarrow\sf {\dfrac {4(2x+3)-3(3x-1)}{3\times 4}\geq0}

\quad

\displaystyle\longrightarrow\sf {\dfrac {8x+12-9x+3}{12}\geq0}

\quad

\displaystyle\longrightarrow\sf {-\dfrac {x-15}{12}\geq0}

\quad

\displaystyle\longrightarrow\sf {\dfrac {x-15}{12}\leq0}

\quad

\displaystyle\longrightarrow\sf {x-15\leq0}

\quad

\displaystyle\longrightarrow\sf {x\leq15}

\quad

Since \displaystyle\sf {x} is a positive even integer,

\quad

\displaystyle\large\longrightarrow\sf {\underline {\underline {x\in\{2,\ 4,\ 6,\ 8,\ 10,\ 12,\ 14\}}}}

Similar questions