Math, asked by khushpreet50, 8 months ago

please solve these mcqs
no useless answers please........

all the best......❤️❤️​

Attachments:

Answers

Answered by amitkumar44481
37

AnsWer :

  • a = 1 / 2
  • b = - 1 / 2

  • k = 1
  • k = 5

QuestioN :

If the point A( - 2 , 1 ) , B( a , b ) and C( 4 , 1 ) are collinear and a - b = 1. Find the value of a , b.

To FinD :

The value of a , b.

SolutioN :

Let,

  • A( - 2 , 1 )
  • B( a , b )
  • C( 4 , - 1 )

For 'X'

  • x1 = - 2
  • x2 = a
  • x3 = 4

For 'Y'

  • y1 = 1
  • y2 = b
  • y3 = - 1

Now, we have Formula

 \tt \dagger \:  \:  \:  \:  \:Area \:  of   \:  \triangle \: ABC- ( Given )

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{1}{2}  \Bigg|x_1(y_2 -y_1 )+x_2(y_3-y_1) +x_3(y_1-y_2)\Bigg|

Now, Putting given values.

 \tt \implies0 =   \dfrac{1}{2}  \Bigg|( - 2)(b  + 1)+(a)( - 1  - 1) +(4)(1-b)\Bigg|

 \tt   : \implies0 =    \Bigg|( - 2b   - 2)+( -2a) +(4-4b)\Bigg|

 \tt   : \implies0 =    \Bigg|- 2b   - 2 -2a+4-4b\Bigg|

 \tt   : \implies0 =    \Bigg|2 -2a-6b\Bigg|

 \tt   : \implies0 =    2  + 2a + 6b

 \tt   : \implies0 =    1  + a + 3b

 \tt   : \implies a + 3b =  - 1 - (1)

 \tt   : \implies a  -  b =  1 - (2)

Form, subtraction equation ( 2 ) and ( 1 )

 \tt   : \implies  \cancel4b =  - \cancel 2.

 \tt   : \implies b =  -  \dfrac{1}{2}

Now, Putting the value of b in equation ( 2 )

 \tt   : \implies a - b = 1  .

 \tt   : \implies a  +  \dfrac{1}{2}  = 1  .

 \tt   : \implies  \dfrac{2a + 1}{2} = 1  .

 \tt   : \implies  2a + 1 = 2

 \tt   : \implies  2a  = 2 - 1

 \tt   : \implies  2a  = 1.

 \tt   : \implies  a =  \dfrac{1}{2}

Therefore, the value of a is 1 / 2 and b is - 1 / 2.

______________________________

VerificatioN :

Taking Equation ( 1 )

 \tt \dagger \:  \:  \:  \:  \:  a + 3b =  - 1.

  • a = 1 / 2.
  • b = - 1 / 2.

 \tt   : \implies a + 3b =  - 1.

 \tt   : \implies  \dfrac{1}{2} + 3 \times  -  \dfrac{1}{2}  =  - 1

 \tt   : \implies  \dfrac{1}{2}   -  \dfrac{3}{2}  =  - 1

 \tt   : \implies  \dfrac{1 - 3}{2} =  - 1

 \tt   : \implies  \dfrac{ - 2}{2}  =  - 1

 \tt   : \implies   - 1=  - 1

______________________________

Taking Equation ( 2 )

 \tt    \dagger \:  \:  \:  \:  \:  a  -  b =  1 - (2)

  • a = 1 / 2
  • b = - 1 / 2.

 \tt   : \implies a  -  b =  1

 \tt   : \implies  \dfrac{1}{2}   -   -  \dfrac{1}{2} =  1

 \tt   : \implies  \dfrac{1 + 1}{2} =  1

 \tt   : \implies  \dfrac{2}{2}   =  1

 \tt   : \implies1 = 1.

Hence Verified.

______________________________

Q8.

If the point P( k - 1 , 2 ) is equidistant from point A( 3 , k ) and B( k , 5 ) , Find the value of k.

To FinD :

Thev value of k.

SolutioN :

Let,

  • A( 3 , k )
  • B( k , 5 )
  • P( k - 1 , 2 )

P is equidistant from point A and B.

so, By ( Distance Formula )

→ AP = BP

 \tt :  \implies \sqrt{{\Big(k - 1 - 3\Big)}^2+{ \Big(2 - k\Big)^2}}= \sqrt{{\Big(k - 1 - k\Big)}^2+{ \Big(2 - 5\Big)^2}}

 \tt :  \implies {\Big(k - 1 - 3\Big)}^2+{ \Big(2 - k\Big)^2}= {\Big(k - 1 - k\Big)}^2+{ \Big(2 - 5\Big)^2}

 \tt :  \implies {\Big(k - 4\Big)}^2+{ \Big(2 - k\Big)^2}= 1+{9}

 \tt :  \implies k^2+16 - 8k+{4+k^2 - 4k}= 10.

 \tt :  \implies 2k^2- 12k + 20= 10.

 \tt :  \implies 2k^2- 12k + 10= 0.

 \tt :  \implies k^2- 6k + 5 = 0.

 \tt :  \implies k^2- 5k - k + 5 = 0.

 \tt :  \implies k(k- 5) - 1(k  -  5) = 0.

 \tt :  \implies (k- 5) (k- 1) = 0.

so,

 \tt  \mapsto k  -  5 = 0.

 \tt  \mapsto k   = 5.

Or,

 \tt  \mapsto k  -  1= 0.

 \tt  \mapsto k   =  1.

Therefore, the value of k is 5 and 1.

Answered by Anonymous
2

Answer:

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell.

Similar questions