Math, asked by TANU81, 10 months ago

Please solve these que's asap.

Attachments:

Answers

Answered by Thatsomeone
5

Step-by-step explanation:

\sf Question\:1 \: : Sorry \: I \: don't\:know \\ \\ \sf Question \: 2 \: ( i ) \\ \\ \sf \int ( 5{x}^{3} + 2cosx + \frac {3}{x} - 9{e}^{x})dx \\ \\ \sf = 5\int {x}^{3} dx + 2\int cosx dx + 3\int \frac {1}{x} dx - 9\int {e}^{x} dx \\ \\ \sf = 5× \frac {{x}^{4}}{4} + 2sinx + 3lnx - 9{e}^{x} \\ \\ \sf Final\:Answer\:= \bold{\underline{\underline{ \frac { 5{x}^{4}}{4} + 2sinx + 3lnx - 9{e}^{x} + c }}}\\ \\ \sf Question\:2\:(ii) \\ \\ \sf \int 2x sin ( {x}^{2} ) \\ \\ \sf This\: question\:have,\:to\:be\:done\:by\: \\ \sf substitution\:method \\ \\ \sf Let\:us\: substitute \:  {x}^{2} = t \\ \\ \sf Differentiating \:w.r.t.x \: we \: get 2x dx = dt \\ \\ \sf= \int sin({x}^{2}) ( 2x dx ) \\ \\ \sf= \int sint dt \\ \\ \sf = - cost + c \\ \\ \sf Final\:Answer \: \bold{\underline{\underline{ -cos( {x}^{2}) + c }}} \\ \\ \sf important\:formula \\ \\ \sf \boxed{\bold{\red{\int {x}^{n} = n{x}^{n-1} + c }}} \\ \\ \sf \boxed{\bold{\red{\int cosx = sinx + c }}} \\ \\ \sf \boxed{\bold{\red{\int {e}^{x} = {e}^{x} + c }}} \\ \\ \sf \boxed{\bold{\red{\int \frac{1}{x} = lnx + c }}}

Answered by sidwarrior123
1

Answer:

ok

Step-by-step explanation:

SOLUTION

BRAINLIEST BUDDY

Similar questions