Math, asked by adityakumar12aditya, 11 months ago

please solve these questions ​

Attachments:

Answers

Answered by BendingReality
15

Answer:

\displaystyle \sf \longrightarrow x=\frac{-1\pm\sqrt{17}}{2} \\ \\

Step-by-step explanation:

Given :

\displaystyle \sf \dfrac{1}{2x-3} -\dfrac{1}{2x+5} =8 \\ \\

Solving it further we get :

\displaystyle \sf \longrightarrow \dfrac{(2x+5)-(2x-3)}{(2x-3)(2x+5)} =8 \\ \\

\displaystyle \sf \longrightarrow \dfrac{(2x+5-2x+3)}{(2x-3)(2x+5)} =8 \\ \\

\displaystyle \sf \longrightarrow \dfrac{(8)}{(2x-3)(2x+5)} =8 \\ \\

\displaystyle \sf \longrightarrow \dfrac{1}{(2x-3)(2x+5)} =1 \\ \\

\displaystyle \sf \longrightarrow  (2x-3)(2x+5) =1 \\ \\

\displaystyle \sf \longrightarrow (4x^2+10x-6x-15) =1 \\ \\

Adding - 1 both side we get :

\displaystyle \sf \longrightarrow (4x^2+10x-6x-15-1) =1 -1 \\ \\

\displaystyle \sf \longrightarrow (4x^2+4x-16) =0 \\ \\

\displaystyle \sf \longrightarrow 4(x^2+x-4)=0 \\ \\

Dividing by 4 both side we get :

\displaystyle \sf \longrightarrow (x^2+x-4)=0 \\ \\

Now roots of equation is given as :

\displaystyle \sf \longrightarrow x=\frac{-b\pm\sqrt{b^4-4ac}}{2a}  \\ \\

\displaystyle \sf \longrightarrow x=\frac{-1\pm\sqrt{1^2-4\times(-4)\times1}}{2\times1}  \\ \\

\displaystyle \sf \longrightarrow x=\frac{-1\pm\sqrt{1+16}}{2} \\ \\

\displaystyle \sf \longrightarrow x=\frac{-1\pm\sqrt{17}}{2} \\ \\

Hence we get required answer.

Similar questions