Math, asked by shapeofyou, 1 year ago

please solve this
10 maths
board exam paper

Attachments:

Answers

Answered by Steph0303
12

Hey there !

Solution:

\dfrac{ SinA - 2\:Sin^3A}{2\:Cos^3A - Cos A } = Tan A \\ \\ \text{ Taking common terms out, we get,} \\ \\ \implies \dfrac{ Sin A ( 1 - 2\:Sin^2A) }{ CosA ( 2\:Cos^2A - 1)} \\ \\ \\ \text{ We know that,:} \\ \\ Cos \:2A = 1 - 2\:Sin^2A \\ \\ Cos 2A = 2\:Cos^2A - 1 \\ \\ \text{Hence we get,} \\ \\ \\ \implies \dfrac{ SinA ( Cos 2A )}{Cos A ( Cos2A )} \\ \\ \\ Cos\:2A \:\: gets \:\: cancelled. Hence, \\ \\ \\ \implies \dfrac{ Sin A}{CosA } = Tan A \\ \\ \\ \textbf{Hence Proved }

Hope my answer helped !


Steph0303: :)
Anonymous: Fantastic Answer
Steph0303: :)
Answered by MOSFET01
12
\huge{\pink{\bold{\underline{\star\: Answer\: \star}}}}

R.H.S.

\frac{ sin \: A +2 \: sin^{3}\:A}{2\:cos^{3}A-cos \: A}\\\\\frac{sin\: A(1-2\: sin^{2}\:A)}{cos\:A(2cos^{2}\:A-1)}\\\\ \frac{tan\: A(1-2\: sin^{2}\:A) }{(2cos^{2}\:A-1)}

 \therefore\:cos^{2}\: A + sin^{2}\: A= 1\\ cos^{2}\:A-1 =\: -sin^{2}\: A\\ or \\ cos^{2} \: A = 1-sin^{2}\:A

........(equation 1)

Now,

 tan\: A \: \frac{[(1\: - sin^{2} \:A )- sin^{2}\:A)}{[cos^{2}\:A +(cos^{2}\: A - 1)]}\\ \\tan\: A\: \frac{(cos^{2}\:A - sin^{2} \:A)}{(cos^{2}\: A - sin^{2}\:A)}

 tan\: A \: \frac{ \cancel{(cos^{2}\: A - sin^{2} \: A)}}{\cancel{(cos^{2} \: A - sin^{2} \:A)}}\\\\ tan \: A

R.H.S

L.H.S = R.H.S

Hence Proved

Steph0303: Great answer :)
MOSFET01: thanks ji :-)
Steph0303: Welcome ji :)
Similar questions