Math, asked by sam3735, 11 months ago

please solve this ,,,,,,,,,,,,, ​

Attachments:

Answers

Answered by Anonymous
11

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

\mapsto\sf{\:A\:=\:\left[\begin{array}{c c} 2 $ 3 \\ 1 $ 2 \end{array}\right]}

  • A² = xA + yI .........(1)

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • Value of x and y

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Here, I is a Identity matrix

So, it will be

\mapsto\sf{\:I\:=\:\left[\begin{array}{c c} 1 $ 0 \\ 0  $  1 \end{array}\right]}

First Calculate:-

  • value of A²

\mapsto\sf{\:A^2\:=\:A\times A}

Keep matrix A ,

\mapsto\sf{\:A^2\:=\:\left[\begin{array}{c c} 2  $  3 \\ 1  $  2 \end{array}\right]\times \left[\begin{array}{c c} 2  $  3 \\ 1  $  2 \end{array}\right]} \\ \\ \\ \mapsto\sf{\:A^2\:=\:\left[\begin{array}{c c}2(2)+3(1)  $  2(3)+3(2) \\ 1(2)+2(1)  $  1(3)+2(2) \end{array}\right]} \\ \\ \\ \mapsto\sf{\:A^2\:=\:\left[\begin{array}{c c} 4+3  $  6+6 \\ 2+2  $  3+4 \end{array}\right]} \\ \\ \\ \mapsto\sf{\:A^2\:=\:\left[\begin{array}{c c} 7  $  12 \\ 4  $  7\end{array}\right]}

Keep value in equ(1) of A² , I and A

\mapsto\sf{\:\left[\begin{array}{c c} 7  $  12 \\ 4  $  7\end{array}\right]\:=\:x\left[\begin{array}{c c} 2  $  3 \\ 1  $  2\end{array}\right]\:+\:y\left[\begin{array}{c c} 1  $  0 \\ 0  $  1\end{array}\right]}

\mapsto\sf{\:\left[\begin{array}{c c} 7  $  12 \\ 4  $  7\end{array}\right]\:=\:\left[\begin{array}{c c} 2x+1y  $  3x+0 \\ 1x+0  $  2x+1y\end{array}\right]}

compare both side,

  • 2x + y = 7 .........(2)
  • 3x = 12..............(3)
  • => x = 12/3
  • => x = 4
  • x = 4 .............(4)
  • 2x + y = 7 .........(5)

Keep value of x in equ(5),

\mapsto\sf{\:2\times 4\:+\:y\:=\:7} \\ \mapsto\sf{\:y\:=\:7-8} \\ \mapsto\sf{\:y\:=\:-1}

Thus:-

  • Value of x = 4
  • Value of y = -1
Similar questions