please solve this 2 questions
Answers
Given :-
- x = 1/(3 - 2√2)
To Find :-
- (x² + 1/x²) = ?
Solution :-
→ x = 1/(3 - 2√2)
→ 1/x = (3 - 2√2) ---------- Equation (1).
And,
→ x = 1/(3 - 2√2)
Rationalising RHS side we get
→ x = 1/(3 - 2√2) * [ (3 + 2√2) / (3 + 2√2) ]
→ x = (3 + 2√2) / (3² - (2√2)²)
→ x = (3 + 2√2) / (9 - 8)
→ x = (3 + 2√2) ------------- Equation (2).
So,
→ (x + 1/x) = (3 - √2) + (3 + 2√2)
→ (x + 1/x) = 6
Squaring both sides now,
→ (x + 1/x)² = 6²
→ x² + 1/x² + 2 * x * 1/x = 36
→ (x² + 1/x²) = 36 - 2
→ (x² + 1/x²) = 34 (Ans.)
_______________
Solution (2) :-
Factorise :-
→ x³ - 3x² - 9x - 5
→ x³ + x² - 4x² - 4x - 5x - 5
→ x²(x+1) - 4x(x+1) - 5(x+1)
→ (x + 1) (x² - 4x - 5)
→ (x + 1) (x² - 5x + x - 5)
→ (x + 1) [ x(x - 5) + 1(x - 5) ]
→ (x + 1) [ (x - 5)(x+1) ]
→ (x + 1)(x+1)(x - 5) (Ans.)
_____________________________
Question 27.
- x = 1/3-2√2
_____________________________
- x²+ 1/x²
_____________________________
➩ x = 1/(3 - 2√2)
➩ 1/x = (3 - 2√2) _______(EQ.1)
➩x = 1/(3 - 2√2)
➩x = 1/(3 - 2√2) × [ (3 + 2√2) / (3 + 2√2) ]
➩x = (3 + 2√2) / (3² - (2√2)²)
➩x = (3 + 2√2) / (9 - 8)
➩x = (3 + 2√2) _________(EQ.2)
So,
➩ (x + 1/x) = (3 - √2) + (3 + 2√2)
➩ (x + 1/x) = 6
➩ (x + 1/x)² = 6²
➩ x² + 1/x² + 2 × x × 1/x = 36
➩ (x² + 1/x²) = 36 - 2
➩ (x² + 1/x²) = 34
_____________________________
Question 28.
- x³ - 3x² - 9x - 5
_____________________________
- Factorising it
_____________________________
➠x³ - 3x² - 9x - 5
➩ x³ + x² - 4x² - 4x - 5x - 5
➩ x²(x+1) - 4x(x+1) -5(x+1)
➩ (x+1)(x² - 4x - 5)
➩ (x+1)(x² - 5x + x - 5)
➩(x+1)[x(x-5) + 1(x-5)]
➩ (x+1)[(x-5)(x+1)]
➩ (x+1)(x+1)(x-5)