CBSE BOARD XII, asked by darshydv192020, 7 months ago

please solve this.....​

Attachments:

Answers

Answered by BrainlyPopularman
120

GIVEN :

  \sf \implies\left|\begin{array}{cc}\sf \: 2x& \sf5\\ \\ \sf \: 8 & \sf\:x\end{array}\right| = \left|\begin{array}{cc}\sf \: 6& \sf - 2\\ \\ \sf \:7 & \sf\:3\end{array}\right|

TO FIND :

Value of 'x' = ?

SOLUTION :

  \sf \implies\left|\begin{array}{cc}\sf \: 2x& \sf5\\ \\ \sf \: 8 & \sf\:x\end{array}\right| = \left|\begin{array}{cc}\sf \: 6& \sf - 2\\ \\ \sf \:7 & \sf\:3\end{array}\right|

• We know that If –

  \sf \implies\left|\begin{array}{cc}\sf \: a& \sf \:b\\ \\ \sf \:c& \sf\:d\end{array}\right|  = ad - bc

• So that –

  \sf \implies(2x)(x) - (8)(5) = (6)(3) - ( - 7)(2)

  \sf \implies2 {x}^{2}  - 40 = 18 - ( - 14)

  \sf \implies2 {x}^{2}  - 40 = 18  +  14

  \sf \implies2 {x}^{2}  - 40 = 32

  \sf \implies2 {x}^{2}=40 +  32

  \sf \implies2 {x}^{2}=72

  \sf \implies {x}^{2}= \cancel \dfrac{72}{2}

  \sf \implies {x}^{2}= 36

  \sf \implies x =  \sqrt{36}

  \sf \implies \large{ \boxed{ \sf x = \pm6}}

Answered by brainlyangel1
2

Answer:

GIVEN :–

\begin{gathered}\sf \implies|\begin{array}{cc}\sf \: 2x& \sf5\\ \\ \sf \: 8 & \sf\:x\end{array}| = |\begin{array}{cc}\sf \: 6& \sf - 2\\ \\ \sf \:7 & \sf\:3\end{array}|\end{gathered}

TO FIND :–

  • Value of 'x' = ?

SOLUTION :–

\begin{gathered}\sf \implies|\begin{array}{cc}\sf \: 2x& \sf5\\ \\ \sf \: 8 & \sf\:x\end{array}| = |\begin{array}{cc}\sf \: 6& \sf - 2\\ \\ \sf \:7 & \sf\:3\end{array}|\end{gathered}

  • We know that If –

\begin{gathered}\sf \implies|\begin{array}{cc}\sf \: a& \sf \:b\\ \\ \sf \:c& \sf\:d\end{array}| = ad - bc\end{gathered}

  • So that –

\sf \implies\green{(2x)(x) - (8)(5) = (6)(3) - ( - 7)(2)}

\sf \implies\green{2 {x}^{2} - 40 = 18 - ( - 14)}

\sf \implies\green{2 {x}^{2} - 40 = 18 + 14}

\sf \implies\green{2 {x}^{2} - 40 = 32}

\sf \implies\green{2 {x}^{2}=40 + 32}

\sf \implies\green{2 {x}^{2}=72}

\sf \implies\green{ {x}^{2}= \cancel \dfrac{72}{2}}

\sf \implies\green{ {x}^{2}= 36}

\sf \implies\green{ x = \sqrt{36}}

\sf \implies \large{ \boxed{ \sf x = \pm6}}

Similar questions