Math, asked by anshkk177, 4 months ago

please solve this. ​

Attachments:

Answers

Answered by Anonymous
4

Given

 :  \implies \displaystyle \sf \lim _{ \sf \: x \to0} \frac{1 - cosx}{2 {x}^{2} }

Now Check the form , So put the value x = 0

 : \sf \implies \dfrac{1 - cos0}{2(0) {}^{2} }

  : \implies \dfrac{1 - 1}{0}  =  \dfrac{0}{0}

So it is 0/0 Form , use L'hospital rule

In L'hospital rule we differentiate Numerator and Denominator with Respect to x

:  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \dfrac{ \dfrac{d(1 - cosx)}{dx} }{ \dfrac{d(2 {x}^{2} )}{dx} }

:  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{ \dfrac{d(1)}{dx}  -  \dfrac{d(cosx)}{dx} }{ 2\dfrac{d( {x}^{2} )}{dx} }

:  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{0 - ( - sinx)}{2(2x)}

:  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{sinx}{4x}

We know that

:  \implies \displaystyle \sf \lim _{ \sf \: x \to0} \dfrac{sinx^{ } }{x}  = 1

By using this We get

 \sf  : \implies 1 \times \dfrac{1}{4}  =  \dfrac{1}{4}

Answer

 :  \implies \dfrac{1}{4}

Answer

Answered by genius1947
5

Question :-

  \red \maltese  \:  \: \displaystyle \sf \lim _{ \sf \: x \to0} \frac{1 - cosx}{2 {x}^{2} }

____________________

Given :-

 \red \implies \displaystyle \sf \lim _{ \sf \: x \to0} \frac{1 - cosx}{2 {x}^{2} }

____________________

Solution :-

  • Check the form,

  • So put the value x = 0,

 \red \sf\red \implies \dfrac{1 - cos0}{2(0) {}^{2} }

 \red \implies \dfrac{1 - 1}{0}  =  \dfrac{0}{0}

  • So it is 0/0 Form , (using L'hospital rule),
  • So it is 0/0 Form , (using L'hospital rule),In L'hospital rule we differentiate Numerator and Denominator with Respect to 'x'

\red  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \dfrac{ \dfrac{d(1 - cosx)}{dx} }{ \dfrac{d(2 {x}^{2} )}{dx} }

\red  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{ \dfrac{d(1)}{dx}  -  \dfrac{d(cosx)}{dx} }{ 2\dfrac{d( {x}^{2} )}{dx} }

\red  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{0 - ( - sinx)}{2(2x)}

\red  \implies \displaystyle \sf \lim _{ \sf \: x \to0}  \frac{sinx}{4x}

  • We know that,

\red \implies \displaystyle \sf \lim _{ \sf \: x \to0} \dfrac{sinx^{ } }{x}  = 1

  • By using this We get,

 \sf  \red \implies 1 \times \dfrac{1}{4}  =  \dfrac{1}{4}

____________________

Final Answer :-

 \dfrac{1}{4}

____________________

Similar questions