Math, asked by aditikar11, 1 month ago

please solve this....​

Attachments:

Answers

Answered by TrustedAnswerer19
4

Step-by-step explanation:

 \sf \: A ,\: B \: and \: C \: are \: the \: angles \: of \: a \: triangle \:  \\  \\  so  \:  \:  \:  \: A + B + C = \pi \\  \therefore  \:A + B = \pi - C \\\therefore \:B + C = \pi - A \\  \therefore \:C + A = \pi - B \\  \\   \\  \\L.H.S =   \frac{sin(B + C) + sin(C + A) + sin(A + C)}{sin(\pi + A)   + sin(3\pi + B) + sin(5\pi + C)}  \\  \\  =  \frac{sin( \pi - A) + sin(\pi - B) + sin(\pi - C)}{ - sinA  - sinB  - sinC}  \\  \\  =  \frac{  \:  \: \cancel{(sinA +  sinB + sinC)}}{ -   \: \cancel{(sinA + sinB + sinC)}}  \\  \\  =  - 1 \\  \\  = R.H.S

Similar questions