Math, asked by GrammyNomBTSstan, 1 month ago

Please solve this above questions. ​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-i}}

Since 3 numbers are in AP.

So, let we assume that three numbers be a - d, a, a + d.

According to statement,

Sum of three numbers is 15.

\rm :\longmapsto\:a  -  d + a + a + d = 15

\rm :\longmapsto\:3a = 15

\rm :\implies\:a = 5

According to statement,

When 1, 4, 19 are added to a - d, a, a + d, the numbers are in GP.

\rm :\longmapsto\:a - d + 1, \: a + 4, \: a + d + 19 \: are \: in \: GP

We know that,

If a, b, c are in GP, then b² = ac

So, using this identity, we have

\rm :\longmapsto\: {(a + 4)}^{2} = (a - d + 1)(a + d + 19)

On substituting the value of a, we get

\rm :\longmapsto\: {(5 + 4)}^{2} = (5 - d + 1)(5 + d + 19)

\rm :\longmapsto\: {(9)}^{2} = (6 - d)(24 + d)

\rm :\longmapsto\: 81= 144 + 6d - 24d -  {d}^{2}

\rm :\longmapsto\: = 144  - 18d -  {d}^{2} - 81 = 0

\rm :\longmapsto\: = 63  - 18d -  {d}^{2} = 0

\rm :\longmapsto\: {d}^{2} + 18d - 63 = 0

\rm :\longmapsto\: {d}^{2} + 21d - 3d - 63 = 0

\rm :\longmapsto\:d(d + 21) - 3(d + 21) = 0

\rm :\longmapsto\:(d + 21)(d - 3) = 0

\bf\implies \:d =  - 21 \:  \:  \: or \:  \:  \: d = 3

So,

Two cases arises

Case :- 1 When a = 5 and d = 3

Numbers are 2, 5, 8

Case :- 2 When a = 5 and d = - 21

Numbers are 26, 5, - 16

\large\underline{\sf{Solution-ii}}

Given that,

a, b, c are in AP

It means, b - a = c - b

2b = a + c --------[ 1 ]

Also, given that,

x, y, z are in GP

It means y² = xz --------- [ 2 ]

Consider,

\rm :\longmapsto\: {x}^{b - c}  {y}^{c - a}  {z}^{a - b}

\rm  \:  = \: {x}^{b - c}  \:  { ( \: \sqrt{xz}  \: )}^{c - a}  \:  {z}^{a - b}

 \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {y}^{2}  = xz \:  \implies \: y =  \sqrt{xz} \bigg \}}

 \rm \:  =  \:  {x}^{b - c} \:  {\bigg(x \bigg) }^{\dfrac{c - a}{2} } \: {\bigg(z \bigg) }^{\dfrac{c - a}{2} } \:  {z}^{a - b}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {(xy)}^{z}  =  {x}^{z} \times  {y}^{z}  \bigg \}}

 \rm \:  =  \:  {\bigg(x \bigg) }^{b - c \:  +  \: \dfrac{c - a}{2} } \: {\bigg(z \bigg) }^{\dfrac{c - a}{2}  \:  +  \: a - b} \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}  \bigg \}}

 \rm \:  =  \:  {\bigg(x \bigg) }^{  \: \dfrac{2b - 2c + c - a}{2} } \: {\bigg(z \bigg) }^{\dfrac{c - a + 2a - 2b}{2}  } \:

 \rm \:  =  \:  {\bigg(x \bigg) }^{  \: \dfrac{2b -  c - a}{2} } \: {\bigg(z \bigg) }^{\dfrac{c + a - 2b}{2}  } \:

 \rm \:  =  \:  {\bigg(x \bigg) }^{  \: \dfrac{a + c -  c - a}{2} } \: {\bigg(z \bigg) }^{\dfrac{c + a - a - c}{2}  } \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: 2b = a + c\bigg \}}

\rm \:  =  \:   {x}^{0} \:  {z}^{0}

\rm \:  =  \:  \:1 \times 1

\rm \:  =  \:  \:1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}


mddilshad11ab: Great¶
Similar questions