Math, asked by ayannaskar3640, 3 days ago

please solve this and first ans will be the brainliest ans​

Attachments:

Answers

Answered by user0888
9

\large\text{\underline{Let's begin:-}}

We have learned that \sec\theta=\dfrac{1}{\cos\theta} and \tan\theta=\dfrac{\sin\theta}{\cos\theta}.

\large\text{\underline{To find:-}}

The value of \sin\theta.

\large\text{\underline{Solution:-}}

\dfrac{\sec\theta-\tan\theta}{\sec\theta+\tan\theta}=\dfrac{1}{4}

\hookrightarrow \dfrac{\dfrac{1}{\cos\theta}-\dfrac{\sin\theta}{\cos\theta}}{\dfrac{1}{\cos\theta}+\dfrac{\sin\theta}{\cos\theta}}=\dfrac{1}{4}

Simply multiply by 1, which is 1=\dfrac{\cos\theta}{\cos\theta}.

\hookrightarrow \dfrac{1-\sin\theta}{1+\sin\theta}=\dfrac{1}{4}

Solving the equation we get,

\hookrightarrow 4(1-\sin\theta)=1+\sin\theta

\hookrightarrow 4-4\sin\theta=1+\sin\theta

\hookrightarrow 5\sin\theta=3\implies\therefore\sin\theta=\dfrac{3}{5}

which is the wanted value.

\large\text{\underline{Conclusion:-}}

The required value is \sin\theta=\dfrac{3}{5}.

Answered by TrustedAnswerer19
26

[ Note: Kindly see my answer from brainly app. ]

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \bf \to \: given \:  :  \\  \\  \rm \:  \frac{sec \:  \theta - tan \: \theta}{sec \: \theta + tan \: \theta}  =  \frac{1}{4} \\  \\  \blue{ \underline{ \sf \: we \: have \: to \: find \:  : }} \\  \\  \sf \: the \: value \: of \: \boxed{ \rm \: sin \: \theta \: } \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:\red{ \underline{ \sf \: solution \: }}  \:  \:  \:  \:  \:  \:  \: \\  \\  \rm \frac{sec \: \theta - tan \: \theta}{sec\theta + tan \: \theta}   =  \frac{1}{4} \\  \\    \:  \:\underbrace{{\pink{ { \boxed{ \begin{array}{cc} \sf \: we \: know \: that \:  :  \\  \\ \sf \hookrightarrow \:   \rm \: sec \: \theta =  \frac{1}{cos \: \theta} \\  \\ \sf \hookrightarrow \:   \rm \:tan \: \theta =  \frac{sin \: \theta}{cos \: \theta}  \end{array}}}}}}_{ \underbrace{ \sf \: apply \: here}_{\downarrow}} \\  \\  \rm \implies \:  \frac{ \frac{1}{cos \: \theta} -  \frac{sin \: \theta}{cos \: \theta}  }{ \frac{1}{cos \: \theta} +  \frac{sin \: \theta}{cos \: \theta}  } =  \frac{1}{4}  \:  \:  \:  \: \\  \\   \rm \implies \: \frac{ \frac{1 - sin \: \theta}{cos \: \theta} }{ \frac{1 + sin \: \theta}{ cos \: \theta}}  =  \frac{1}{4} \\  \\   \rm \implies \:\frac{1 - sin \: \theta}{ \cancel{cos \: \theta}}  \times  \frac{ \cancel{ cos \: \theta}}{1 + sin \: \theta}   =  \frac{1}{4} \\  \\   \rm \implies \: \frac{1 - sin \: \theta}{1 + sin \: \theta}  =  \frac{1}{4}   \\  \\   \rm \implies \:4(1 - sin \: \theta) = 1(1 + sin \: \theta) \\  \\   \rm \implies \:4 - 4sin \: \theta = 1 + sin \: \theta \\  \\   \rm \implies \: - 4sin \: \theta - sin \: \theta = 1 - 4 \\  \\   \rm \implies \: \cancel{ - } \: 5sin \: \theta =   \cancel{- } \: 3 \\  \\   \rm \implies \:5sin \: \theta = 3 \\  \\   \rm \implies \:sin \: \theta =  \frac{3}{5}  \\  \\  \\   \blue{ \boxed{\therefore \rm \: sin \: \theta =  \frac{3}{5} }}\end{array}}}}}

Similar questions