Math, asked by AbhinavGaurav69, 20 days ago

Please Solve This And Get Thanks​

Attachments:

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

∠EAB = 90°, ∠DCB = 90°, ∠EBD = 90°

In right angle triangle ABE, AB = 6 cm, AE = 9 cm

In right angle triangle DBC, BC = 6 cm, DC = 4 cm

Now, Consider right-angled triangle ABE

By using Pythagoras Theorem, we have

\rm \:  {BE}^{2}   = {AB}^{2} +  {AE}^{2}  \\

So, on substituting the values of AB and AE, we get

\rm \:  {BE}^{2}   = {6}^{2} +  {9}^{2}  \\

\rm \:  {BE}^{2}   =36 + 81  \\

\rm \:  {BE}^{2}  = 117 \:  \\

\rm\implies \:\boxed{\sf{  \: \: \rm \:  {EB}^{2} \:  =  \: 117 \:  cm \:  \: \: }}  \\

Now, Consider right-angled triangle DCB

By using Pythagoras Theorem, we have

\rm \:  {DB}^{2} =  {CB}^{2}  +  {DC}^{2}  \\

On substituting the values of CB and DC, we get

\rm \:  {DB}^{2} =  {6}^{2}  +  {4}^{2}  \\

\rm \:  {DB}^{2} =  36 + 16  \\

\rm \:  {DB}^{2}  = 52 \:  \\

\rm\implies \: \:  \: \boxed{\sf{  \: \:  \: \rm \:  {BD}^{2} =  52  \: cm \: \:  \: }}  \\

Now, Consider right-angled triangle EBD

By using Pythagoras Theorem, we have

\rm \:  {ED}^{2}  =  {EB}^{2}  +  {BD}^{2}  \\

So, on substituting the values, we get

\rm \:  {ED}^{2}  =  117 + 52  \\

\rm \:  {ED}^{2}  =  169  \\

\rm \:  {ED}^{2}  =   {13}^{2}   \\

\rm\implies \:\boxed{\sf{  \: \: \rm \:  \: ED \:  =  \: 13 \: cm \:  \:  \: }} \\

Hence,

\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\sf{ {EB}^{2} = 117 \: cm }  \\ \\ &\sf{ {BD}^{2} = 52 \: cm } \\ \\ &\sf{ED \:  =  \: 13 \: cm} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Pythagoras Theorem :-

This theorem states that : In a right-angled triangle, the square of the longest side is equal to sum of the squares of remaining sides.

2. Converse of Pythagoras Theorem :-

This theorem states that : If the square of the longest side is equal to sum of the squares of remaining two sides, angle opposite to longest side is right angle.

3. Area Ratio Theorem :-

This theorem states that :- The ratio of the area of two similar triangles is equal to the ratio of the squares of corresponding sides.

4. Basic Proportionality Theorem :-

This theorem states that : If a line is drawn parallel to one side of a triangle, intersects the other two lines in distinct points, then the other two sides are divided in the same ratio.

Attachments:

anindyaadhikari13: Perfect!
Aryan0123: Awesome !
Answered by AestheticDude
15

Question :-

From the figure , Calculate :-

\rm \: i) {EB}^{2}  \:  \: ii) {BD}^{2}  \: \:  iii) {ED}^{2}

   \rm \huge{ \underline{  \underline{Solution :-}}}

Given :-

  • ∠BAE = 90°
  • ∠DCB = 90°
  • ∠DBE = 90°

Now , can you notice two right - angled triangle ABE and DBC .

  1. In the right - angle triangle ABE , Given :-
  • AB = 6 cm
  • AE = 9 cm

    2. In the right - angle triangle DCB , Given :-

  • BC = 6 cm
  • CD = 4 cm

Now , According to Pythagoras Theorem ,

 \boxed{ \tt \: AB^{2} =  AC  ^{2} + BC ^{2}  }

But , here it

In right angle triangle ABE ,

 \boxed{ \tt \: EB ^{2} =  AB  ^{2} +  AE  ^{2}  }

 \tt \implies \: EB^{2}  =  {6}^{2}  +  {9}^{2}

 \tt \implies \: EB^{2}  =  36  +  81

 \tt \implies \:EB^{2}  =  117 \: cm

 \therefore \tt \: EB ^{2}  = 117 \: cm

Now finding ii that is BD whole Square.

Now , According to Pythagoras Theorem,

In right angle triangle DCB ,

 \boxed{ \tt \: DB ^{2} =    CB^{2} +    DC  ^{2}  }

 \implies\tt \: DB ^{2} =    6^{2} +    4 ^{2}

 \implies\tt \: DB ^{2} =  3  6 + 16

 \implies\tt \: DB ^{2} =  52 \: cm

 \therefore \tt \:DB ^{2}  = 52\: cm

Now , According to Pythagoras Theorem ,

In right angle triangle EBD ,

 \boxed{ \tt \: ED ^{2} =    EB ^{2} + BD ^{2}  }

  \implies\tt \: ED ^{2} =     117+ 52

  \implies\tt \: ED ^{2} =     169

  \implies\tt \: ED ^{2} =    13  \times 13

  \implies\tt \: ED ^{2} =    13  ^{2}

\therefore \tt \:ED ^{2}  = 13\: cm

Therefore,

  \longmapsto \:  \begin{cases} \tt   EB^{2}   = 117 \: cm \:  \\  \tt \:   BD ^{2}  = 52 \: cm \\  \tt ED   = 13 \: cm\end{cases}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More :-

\star\boxed{\tt\bf \: Hypotenuse ^2 = Base ^2+Perpendicular ^2}

  • Always remember Hypotenuse is the biggest side

Attachments:

Aryan0123: Good answer :)
anindyaadhikari13: Great!
Similar questions