Math, asked by mazumdarneha95, 1 month ago

please solve this and if possible write in copie​

Attachments:

Answers

Answered by 12thpáìn
310

 {\implies\sf\cfrac{1}{2 +  \sqrt{3} }  +  \cfrac{2}{ \sqrt{5}  - 3}   +  \cfrac{1}{2 -  \sqrt{5} }}

{\implies \sf\cfrac{1(2 -  \sqrt{3} )}{(2 +  \sqrt{3})(2 -  \sqrt{3} ) }  +  \cfrac{2( \sqrt{5} + 3) }{ (\sqrt{5}  - 3)( \sqrt{5} + 3) }   +  \cfrac{1(2 +  \sqrt{5} }{(2 -  \sqrt{5})(2 +  \sqrt{5}  )}}

{\implies\sf\cfrac{2 -  \sqrt{3} }{ {2}^{2} -  (\sqrt{3}) ^{2}   }  +  \cfrac{2 \sqrt{5} + 6}{ ( \sqrt{5})^{2} -  {3}^{2}    }   +  \cfrac{1(2 +  \sqrt{5} }{ {2}^{2} -(  \sqrt{5}  ) ^{2}} }

{\implies\sf\cfrac{2 -  \sqrt{3} }{4 - 3   }  +  \cfrac{2 \sqrt{5} + 6}{ 5 - 9    }   +  \cfrac{2 +  \sqrt{5} }{ 4 - 5 }}

{\sf\implies\cfrac{2 -  \sqrt{3} }{1  }  +  \cfrac{2 (\sqrt{5} + 3)}{  - 4  }   +  \cfrac{2 +  \sqrt{5} }{  - 1 }}

\sf{\implies \cancel{2} -  \sqrt{3} }{ }   -  \cfrac{  \cancel{2}( \sqrt{5} + 3)}{  \cancel{  4 }^{2}  }    -  {\cancel{2} +  \sqrt{5} }

\sf \implies -  \sqrt{3}  +  \sqrt{5}   -  \cfrac{ \sqrt{5} + 3}{   2  }

\sf \implies    \dfrac{ - \sqrt{ 3}} {1} +   \dfrac{\sqrt{5}}{1}   -  \cfrac{ \sqrt{5} + 3}{   2  }

\sf  \implies   \dfrac{ - \sqrt{ 3} \times 2 + 2 \times  \sqrt{5} - 2 \times  \sqrt{5} +  3 \times 2 } {2}

\sf \implies    \dfrac{ -2 \sqrt{3} +  2\sqrt{5}   -  2\sqrt{5}  + 6} {2}

\sf \implies    \dfrac{ -2 \sqrt{3} +   \xcancel{2\sqrt{5} }  -   \xcancel{2\sqrt{5}}  + 6} {2}

\sf \implies    \dfrac{ 2 ( - \sqrt{3}  + 3)} {2}

\sf  \implies   3  - \sqrt{3}

Hope it helpful ❣️

Attachments:
Answered by badolamamta68
1

Answer:

3-√3

Step-by-step explanation:

answer is in the attachment

Attachments:
Similar questions