Math, asked by abhijeetvshkrma, 4 months ago

please solve this...
and no fake answers ​

Attachments:

Answers

Answered by Flaunt
103

Question

\sf  \int \dfrac{1 + cos4x}{cosx - tanx} dx

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

By using half angle formula:

 \sf=  > cos4x = 2 {cos}^{2} 2x - 1

 \sf=  > 1 + cos4x = 2 {cos}^{2} x

 \sf=  > \displaystyle\int \dfrac{2 {cos}^{2}2x }{ \dfrac{cosx}{sinx} -  \dfrac{sinx}{cosx}  } dx

 \sf=  > \displaystyle \int \dfrac{2 {cos}^{2}2x }{ \dfrac{ {cos}^{2} x -  {sin}^{2}x }{cosxsinx} } dx

 \sf=  > \displaystyle\int \dfrac{2 {cos}^{2}2xcosxsinx }{cos2x} dx

 \sf=  > \displaystyle\int \: cos2x(2sinxcosx)dx

 \sf=  >  \dfrac{1}{2} \displaystyle\int \: 2cos2xsin2xdx

 \sf=  >  \dfrac{1}{2} \displaystyle\int \: sin4xdx

\sf \boxed{\int \: Sinaxdx =  -  \dfrac{cosax}{a}  + c}

 \sf=  >  \dfrac{1}{2}\displaystyle \int \dfrac{(cos4x)}{4}  + c =  \dfrac{ - cos4x}{8}  + c

Answered by PᴀʀᴛʜTʀɪᴘᴀᴛʜɪ
23

Hey Dear Brother.. Refer to Attachment for correct Answer..

Attachments:

mananlabana78: hii
PᴀʀᴛʜTʀɪᴘᴀᴛʜɪ: нí
mananlabana78:
mananlabana78: pahal
mananlabana78: hii
mananlabana78: me janvi
mananlabana78: you
Similar questions