Math, asked by abhijeetvshkrma, 3 months ago

please solve this and please don't post fake answer.​

Attachments:

Answers

Answered by IdyllicAurora
15

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the Concept of Integration has been used. We see we are given a equation. Firstly we shall reduce the given equation in form of sin and cos function. Then we shall integrate it and find the answer.

Let's do it !!

______________________________________________

Solution :-

\\\;\displaystyle{\bf{\mapsto\;\;\green{\int\:\dfrac{1\;+\;\cos\:4x}{\cot\:x\;-\;\tan\:x}\:dx}}}

Now firstly let's simplify this equation in the form of sin and cos function.

We know that,

\\\;\tt{\leadsto\;\;\orange{\cot\:\theta\;=\;\dfrac{\cos\theta}{\sin\theta}}}

\\\;\tt{\leadsto\;\;\orange{\tan\:\theta\;=\;\dfrac{\sin\theta}{\cos\theta}}}

Now applying this with the given expression, we get

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\bigg(\dfrac{\cos\:x}{\sin\:x}\bigg)\;-\;\bigg(\dfrac{\sin\:x}{\cos\:x}\bigg)}\:dx}}

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\dfrac{\cos\:x}{\sin\:x}\;-\;\dfrac{\sin\:x}{\cos\:x}}\:dx}}

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\dfrac{\cos^{2}\:x\;-\;\sin^{2}\:x}{\sin\:x\;\cos\:x}}\:dx}}

On integrating, this can be written as,

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{2\:\cos^{2}\:2x}{\cos\:2x}\:\sin\:x\:.\:\cos\:x\:dx}}

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\cot\:x\;-\;\tan\:x}\:dx\;=\;\bf{\int\:\dfrac{2\:\cos^{2}\:2x}{\cos\:2x}\:\sin\:x\:.\:\cos\:x\:dx}}}

Finally this will give us,

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\cot\:x\;-\;\tan\:x}\:dx\;=\;\bf{\int\:\cos\:2x\:.\:\sin\:2x\:dx}}}

Now taking out the ½ , we get

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\cot\:x\;-\;\tan\:x}\:dx\;=\;\bf{\dfrac{1}{2}\:\int\:\sin\:4x\:dx}}}

This will eventually give us,

\\\;\displaystyle{\bf{\rightarrow\;\;\int\:\dfrac{1\;+\;\cos\:4x}{\cot\:x\;-\;\tan\:x}\:dx\;=\;\bf{\red{-\:\dfrac{1}{8}\:\cos\:4x\:+\:C}}}}

This is the required answer.

\\\;\underline{\boxed{\tt{Required\;Integral\;=\;\bf{\purple{-\:\dfrac{1}{8}\:\cos\:4x\:+\:C}}}}}

______________________________________________

Laws of integration :-

\\\;\displaystyle{\sf{\leadsto\;\;\int\:x^{n}\:dx\;=\;\dfrac{x^{n\:+\:1}}{n\;+\;1}\:+\:C}}

\\\;\displaystyle{\sf{\leadsto\;\;\int\:a^{x}\:dx\;=\;\dfrac{a^{x}}{log_{e}\:a}\:+\:C}}

\\\;\displaystyle{\sf{\leadsto\;\;\int\:e^{x}\:dx\;=\;e^{x}\:+\:C}}


IdyllicAurora: Thanks everyone :)
Similar questions