Math, asked by t9450810464, 7 months ago

Please solve this and step wise jiska step wise nahi hua to wo answer faltu hai ........ and ha meri book ki answersheet me *Answer* 56 aaa raha hai okay ​

Attachments:

Answers

Answered by prince5132
56

GIVEN :-

 \mapsto \sf \:  \sqrt[3]{ \sqrt{46656} }

TO FIND :-

\mapsto \sf value \: of \: \:  \sqrt[3]{ \sqrt{46656} }

SOLUTION :-

\mapsto \sf \:  \sqrt[3]{ \sqrt{46656} }

➫ Firstly we will find the square root of 46656.

\Large{ \begin{array}{c|c} \tt 2& \sf{ 46656 } \\ \cline{1-2} \tt 2& \sf { 23328 } \\ \cline{1-2}  \tt 2& \sf{ 11664} \\ \cline{1-2} \tt 2 & \sf{ 5832} \\ \cline{1-2} \tt 2 & \sf{2916}\\ \cline{1-2} \tt 2 & \sf{1458 }\\ \cline{1-2} \tt 3 & \sf{729} \\   \cline{1 - 2} \tt 3& \sf{243} \\  \cline{1 - 2} \tt 3& \sf{81} \\  \cline{1 - 2} \tt 3& \sf{27} \\  \cline{1 - 2} \tt 3&  \sf{9} \\  \cline{1 - 2} \tt 3& \sf{3} \\  \cline{1 - 2} \tt  &  \sf{1}\end{array}}

 \therefore \sf \:  \sqrt{46656}  =  \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}  \\  \\  \mapsto \sf \:  \sqrt{46656}  =  \sqrt{2 ^{2} \times 2 ^{2} \times 2^{2}  \times 3 ^{2}   \times 3^{2}  \times 3 ^{2}}  \\  \\  \mapsto \sf \:  \sqrt{46656}  = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \\ \\   \mapsto \sf \:  \sqrt{46656}  = \underline{ \boxed{ \blue{ \sf 216}}}

✒ Hence we got the value of 46656 = 216

Now,

 \mapsto \sf \:  \sqrt[3]{216}

\Large{ \begin{array}{c|c} \tt 6& \sf{ 216 } \\ \cline{1-2} \tt 6 & \sf { 36 } \\ \cline{1-2}  \tt 6& \sf{ 6} \\ \cline{1-2} \tt & \sf{ 1}\end{array}}

 \therefore \sf  \sqrt[3]{216}  =  \sqrt[3]{6 \times 6 \times 6}  \\  \\  \mapsto \sf \:  \sqrt[3]{216}  =  \sqrt[3]{6 ^{3} }  \\  \\  \mapsto \sf \:  \sqrt[3]{216}  =  \underline{ \boxed{ \blue{ \sf6}}}

Now,

 \boxed{ \boxed{ \red{ \bf \sqrt[3]{ \sqrt{46656}  = 6} }}}

Hence the required answer is 6.

Answered by musermasum
22

Answer :

Solution : \sqrt[3]{\sqrt{46656} }

First of all we have to find H.C.F of  46656  to remove square root

   

2I46656

2I23328

2I11664

2I5832

2I2916

2I1458

3I729

3I243

3I81

3I27

3I9

3I3

 I1

H.C.F = 2X2X2X2X2X2X3X3X3X3X3X3

  Hence,

\sqrt{46656} = \sqrt{2^{2}X 2^{2}X 2^{2} X3^{2}X3^{2} X 3^{2}

            =2X2X2X3X3X3

            =216

Now, secondly we have to find H.C.F of 216 to remove cube root

3I216

3I72

3I24

2I8

2I4

2I2

 I1

H.C.F = 3X3X3X2X2X2

Hence,

\sqrt[3]{216} =  \sqrt[3]{3X3X3X2X2X2}

        = \sqrt[3]{3^{3} X 2^{3} }

        = 3 X 2

        = 6

Therefore,\sqrt[3]{\sqrt{46656} } = 6

Similar questions