Math, asked by yoyoayushk, 11 months ago

Please solve this and take 50 points

Attachments:

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}}

\textbf{To simplify:}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}}

\textbf{Solution:}

\mathsf{y^2+2y-48}

\mathsf{=y^2+8y-6y-48}

\mathsf{=y(y+8)-6(y+8)}

\implies\mathsf{y^2+2y-48=(y-6)(y+8)}

\mathsf{y^2-64}

\mathsf{=y^2-8^2}

\mathsf{=(y-8)(y+8)}

\mathsf{Consider,}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64))}}

\mathsf{=\dfrac{(3{\times}3{\times}5)\,y^3(y-6)(y+8)}{(2{\times}3{\times}5)\,y^2(y-8)(y+8)}}

\mathsf{=\dfrac{3\,y(y-6)}{2(y-8)}}

\implies\boxed{\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}=\dfrac{3\,y(y-6)}{2(y-8)}}}

Answered by mahek77777
2

\huge\textbf{Given:}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}}

\textbf{To simplify:}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}}

\textbf{Solution:}

\mathsf{y^2+2y-48}

\mathsf{=y^2+8y-6y-48}

\mathsf{=y(y+8)-6(y+8)}

\implies\mathsf{y^2+2y-48=(y-6)(y+8)}

\mathsf{y^2-64}

\mathsf{=y^2-8^2}

\mathsf{=(y-8)(y+8)}

\mathsf{Consider,}

\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64))}}

\mathsf{=\dfrac{(3{\times}3{\times}5)\,y^3(y-6)(y+8)}{(2{\times}3{\times}5)\,y^2(y-8)(y+8)}}

\mathsf{=\dfrac{3\,y(y-6)}{2(y-8)}}

\implies\boxed{\mathsf{\dfrac{45\,y^3(y^2+2y-48)}{30\,y^2(y^2-64)}=\dfrac{3\,y(y-6)}{2(y-8)}}}

Similar questions