please solve this and verify
Answers
Solution
Given :-
- x = (√5 - √3)/(√5 + √3)
- y = (√5 + √3)/(√5 - √3)
To Prove:-
- x² + y² - 6xy = 56
Explanation
Rationaliza denominator of x .
==> x = (√5 - √3)/(√5 + √3)
==> x = (√5 - √3)(√5 - √3)/(√5 + √3)(√5 - √3)
Using Formula
★(a + b)² = a² + b² + 2ab
★ (a - b)(a + b) = (a² - b²)
==> x = [(√5)² + (√3)² - 2×(√5) × (√3) ]/[ (√5)² - (√3)²]
==> x = [ 5 + 3 - 2√15]/( 5 - 3)
==> x = (8 - 2√15)/(2)
==> x = 2(4 - √15)/2
==> x = (4 - √15)
Squaring both side
==> x² = (4 - √15)²
==> x² = 4² + (√15)² - 2×4 × √15)
==> x² = 16 + 15 - 8√15
==> x² = 31 - 8√15
Now, Rationalize denominator of y
==> y = (√5 + √3)/(√5 - √3)
==>y = (√5 + √3)(√5 + √3)/(√5 - √3)(√5 + √3)
==> y = [(√5)² + (√3)² + 2 × √5 × √3]/[(√5)² - (√3)²]
==> y = (5 + 3 + 2√15)/(5 - 3)
==> y = (8 + 2√15)/2
==> y = 2(4 + √15)/2
==> y = (4 + √15)
Squaring both side
==> y² = (4 + √15)²
==> y² = 16 + 15 + 2 × 4× √15
==> y² = 31 + 8√15
Now, Calculate ( x² + y² - 6xy)
Keep value of x² , y² & xy
= ( 31 - 8√15) +(31 + 8√15) - 6 (4 - √15)(4 + √15)
= 62 - 6(16 - 15)
= 62 - 6
= 56
= R.H.S.
That's Proved.