Math, asked by anuj9704, 1 year ago

please solve this answer i have alot of qiestions

Attachments:

Answers

Answered by BEJOICE
1

let \: x = 4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{4 + .... \infty } } }  \\ then \\ x = 4 +  \frac{1}{x}  \\  {x}^{2}  - 4x - 1 = 0 \\ x =  \frac{4 +  \:  \: or \:  \:  -  \sqrt{ {( - 4)}^{2}  - 4 \times 1  \times  - 1} }{2 \times 1}  \\ x = 2 +   \sqrt{5} \:  \: or \:  \: 2 -  \sqrt{5}  \\ since \:  \:  - ve \:  \: value \:  \: is \:  \: not \:  \: admissible \\  4 +  \frac{1}{4 +  \frac{1}{4 +  \frac{1}{4 + .... \infty } } } = 2 +  \sqrt{5}
Similar questions