Math, asked by vineetpal1803, 8 months ago

please solve this answer in proper method​

Attachments:

Answers

Answered by pc0354525
1

Answer:

Step-by-step explanation:

x = \frac{6pq}{p+q}  and  x = \frac{6pq}{p+q}

x = \frac{3p * 2q}{p + q}     ∴x = \frac{2p * 3q}{p + q}

\frac{x}{3p} = \frac{2q}{p +q}      ∴ \frac{x}{3q} = \frac{2p}{p +q}

By componendo- dividendo

\frac{x+3p}{x - 3p}  = \frac{2q + p + q}{2q - (p +q)}   and  \frac{x+3q}{x - 3q}  = \frac{2p + p + q}{2p - (p +q)}

∴  \frac{x+3p}{x - 3p}  = \frac{ p + 3q}{q -p}     and    \frac{x+3q}{x - 3q}  = \frac{3p+ q}{p -q}

∴  \frac{x+3p}{x - 3p}  + \frac{ x + 3q}{x - 3q}       =       \frac{p+3q}{q -p }  - \frac{3p+ q}{p -q}

= \frac{p + 3q}{q - p} - \frac{3p + q}{q - p} = \frac{p + 3q - 3p - q}{q - p}

\frac{x+3p}{x - 3p} + \frac{x+3q}{x - 3q} = \frac{2q -2p}{q -p} = 2

Hope this helps you dear!!!

Similar questions