Math, asked by AnanyaBaalveer, 17 days ago

Please solve this.
Answer only moderators please no one else.​

Attachments:

Answers

Answered by rayarkadip1234
0

Answer:

the missing frequencies are 4 and 25.

Step-by-step explanation:

the final result is f1 and de value that i have assumed ..

please go through the steps

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that the two missing frequencies be a and b.

So, frequency distribution table for calculations of mean are as follow :

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf x&\sf \: f&\sf \:fx\\\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}\\\sf 0&\sf 2&\sf0\\\\\sf 1&\sf 8&\sf8\\\\\sf 2 &\sf 13&\sf26\\\\\sf 3&\sf a&\sf3a \\\\\sf 4&\sf 29&\sf116\\\\\sf 5&\sf b&\sf5b\\\\\sf 6&\sf 10&\sf60\\\\\sf 7&\sf 3&\sf21\\\frac{\qquad}{}&\frac{\qquad}{}&\frac{\qquad \qquad}{}\\\sf & 65 + a + b\sf & 231 + 3a + 5b\end{array}}\end{gathered}\end{gathered}\end{gathered}

Now, it is given that,

\rm \:  \sum \: f \:  =  \: 100 \\

\rm \:  65 + a + b  =  \: 100 \\

\rm \:  a + b  =  \: 100 - 65 \\

\rm \:a + b = 35 \\

\rm\implies \:a = 35 - b -  -  - (1) \\

Now, further given that

\rm \:  \overline{x} \:  =  \: 3.68 \\

\rm \: \dfrac{ \sum \: fx}{ \sum \: f}  \:  =  \: 3.68 \\

\rm \: \dfrac{231 + 3a + 5b}{100}  = 3.68 \\

\rm \: 231 + 3a + 5b = 368 \\

\rm \:  3a + 5b = 368  - 231 \\

\rm \:  3a + 5b = 137 \\

\rm \:  3(35 - b) + 5b = 137 \\

\rm \:  105 - 3b + 5b = 137 \\

\rm \:  2b = 137 - 105 \\

\rm \:  2b = 32 \\

\rm\implies \:b \:  =  \: 16 \\

On substituting b = 16 in equation (1), we get

\rm \: a = 35 - 16 \\

\rm\implies \:a \:  =  \: 19 \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean using Direct Method

\boxed{ \rm{ \:\rm \:  \overline{x} \:  =  \: \dfrac{ \sum \: fx}{ \sum \: f}  \:  }} \\

2. Mean using Short Cut Method

\boxed{ \rm{ \:\rm \:  \overline{x} \:  = A \:  +  \: \dfrac{ \sum \: fd}{ \sum \: f}  \:  }} \\

3. Mean using Step Deviation Method

\boxed{ \rm{ \:\rm \:  \overline{x} \:  = A \:  +  \: \dfrac{ \sum \: fu}{ \sum \: f}  \times h \:  }} \\

Similar questions