Math, asked by singhrameshkuma1983, 10 months ago

please solve this Answer this question​

Attachments:

Answers

Answered by RJRishabh
3

Namastey ....

Hope it'll help

Attachments:
Answered by Anonymous
7

Question:

\sf{If\:(x+\frac{1}{x})=3,\:find\: the\: value\:of\:x^2+\frac{1}{x^2}.}

Solution :

\sf{x+\frac{1}{x}=3}

\sf{x^2+\frac{1}{x^2}}

Use the identity : +=(a+b)²-2ab

\implies\sf{(x+\frac{1}{x})^2-2.x.\frac{1}{x}}

Put \sf{x+\frac{1}{x}=3} .

\implies\sf{(3)^2-2}

\implies\sf{9-2}

\implies\sf{7}

Therefore,

\sf{The\: value\:of\:x^2+\frac{1}{x^2}\:is\:7.}

_______________________

More identities :-

• (a+b)² = a² + 2ab + b²

• (a-b)² = a² - 2ab + b²

• a² - b² = (a+b) (a-b)

• (a+b)² + (a-b)² = 2(a² + b² )

• (a+b)² - (a-b)² = 4ab

_______________________

Similar questions