Math, asked by abhijeetvshkrma, 3 months ago

Please solve this ASAP ​

Attachments:

Answers

Answered by Flaunt
123

Question:

\sf\displaystyle \int \:  \dfrac{ {x}^{3} }{ {x}^{2}  + 1}

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Adding and subtracting x

 \sf \large=  > \displaystyle \int \:  \dfrac{ {x}^{3} - x + x }{ {x}^{2} + 1 } dx

 \sf\large=  > \displaystyle \int \:  \dfrac{x( {x}^{2}  + 1) - x}{ {x}^{2} + 1 } dx

 \sf\large=  >\displaystyle  \int \bigg(\dfrac{x( {x}^{2}  + 1)}{ {x}^{2} + 1 }  - \dfrac{x}{ {x}^{2}  + 1} \bigg)dx

 \sf\large=  >\displaystyle  \int\bigg(x -  \dfrac{x}{ {x}^{2}  + 1}\bigg)dx

 \sf\large=  > \displaystyle \int \: xdx -  \int \dfrac{x}{ {x}^{2} + 1 } dx

\sf\boxed{ {x}^{n} dx =  \dfrac{ {x}^{n + 1} }{n + 1}  + c}

 \sf\large= \dfrac{ {x}^{2} }{2}  -  \dfrac{1}{2}log( {x}^{2}   + 1) + c


Flaunt: calculation given in latest Question
PᴀʀᴛʜTʀɪᴘᴀᴛʜɪ: Yess... you are Right
Answered by XxMissCutiepiexX
7

Step-by-step explanation:

number of people who do not show up (x) is a binomial variable with probability 0.2.

probability 0, 1 or 2 are no shows is:

C(31,0) 0.2^0 0.8^31 + C(31,1)0.2^1 0.8^30 + C(31,2) 0.2^2 0.8^29

where C(31,x) = number of combinations of 31 items taking x at a time.

= 0.00099 + 0.00768 + 0.0288 = 0.037

Similar questions