Math, asked by abhijeetvshkrma, 4 months ago

Please solve this ASAP
and please no fake answers ​

Attachments:

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ ∫2ˣ + 3ˣ/5ˣ dx.

As we know that,

⇒ ∫aˣdx = aˣ/㏒(a) + c = aˣ(㏒ₐe) + c.

Apply this formula in equation, we get.

⇒ ∫2ˣ + 3ˣ/5ˣ dx.

⇒ ∫2ˣ/5ˣ dx + ∫3ˣ/5ˣ dx.

We can also write as,

⇒ ∫(2/5)ˣ dx + ∫(3/5)ˣ dx.

⇒ (2/5)ˣ/㏒(2/5) + (3/5)ˣ/㏒(3/5) + c.

                                                                                       

MORE INFORMATION.

\sf \implies \int \sqrt{a^{2} - x^{2}  } dx = \dfrac{x}{2} \sqrt{a^{2} - x^{2} } + \dfrac{a^{2} }{2} sinx^{-1} \dfrac{x}{a} + c

\sf \implies \int \sqrt{x^{2} + a^{2} } dx = \dfrac{x}{2} \sqrt{x^{2} + a^{2} } + \dfrac{a^{2} }{2}. sinh^{-1} \dfrac{x}{a} + c

\sf \implies \int \sqrt{x^{2} - a^{2} } dx  = \dfrac{x}{2} \sqrt{x^{2} - a^{2} } - \dfrac{a^{2} }{2} .cosh^{-1} \dfrac{x}{a} + c.

\sf \implies \int \dfrac{1}{x\sqrt{x^{2} - a^{2} } } dx = \dfrac{1}{a} sec^{-1} \dfrac{x}{a} + c.

\sf \implies \int e^{ax} sin bx dx = \dfrac{e^{ax} }{a^{2}+ b^{2}  } (a sinbx - b cosbx) + c = \dfrac{e^{ax} }{\sqrt{a^{2} + b^{2} } } sin \bigg(bx - tan^{-1}\dfrac{b}{a}\bigg) + c

\sf \implies \int e^{ax} cos bx dx = \dfrac{e^{ax} }{a^{2}+ b^{2}  } (a cos bx + b sin bx )  + c = \dfrac{e^{ax} }{\sqrt{a^{2} + b^{2} } } cos \bigg(bx - tan^{-1} \dfrac{b}{a} \bigg) + c


Anonymous: Again :fab_wow: ♥️ Just awesome (:
BlossomingBud123: Thank you.
Answered by SSouravkumar
0

Answer:

EXPLANATION.

⇒ ∫2ˣ + 3ˣ/5ˣ dx.

As we know that,

⇒ ∫aˣdx = aˣ/㏒(a) + c = aˣ(㏒ₐe) + c.

Apply this formula in equation, we get.

⇒ ∫2ˣ + 3ˣ/5ˣ dx.

⇒ ∫2ˣ/5ˣ dx + ∫3ˣ/5ˣ dx.

We can also write as,

⇒ ∫(2/5)ˣ dx + ∫(3/5)ˣ dx.

⇒ (2/5)ˣ/㏒(2/5) + (3/5)ˣ/㏒(3/5) + c.

MORE INFORMATION.

\sf \implies \int \sqrt{a^{2} - x^{2} } dx = \dfrac{x}{2} \sqrt{a^{2} - x^{2} } + \dfrac{a^{2} }{2} sinx^{-1} \dfrac{x}{a} + c⟹∫

a

2

−x

2

dx=

2

x

a

2

−x

2

+

2

a

2

sinx

−1

a

x

+c

\sf \implies \int \sqrt{x^{2} + a^{2} } dx = \dfrac{x}{2} \sqrt{x^{2} + a^{2} } + \dfrac{a^{2} }{2}. sinh^{-1} \dfrac{x}{a} + c⟹∫

x

2

+a

2

dx=

2

x

x

2

+a

2

+

2

a

2

.sinh

−1

a

x

+c

\sf \implies \int \sqrt{x^{2} - a^{2} } dx = \dfrac{x}{2} \sqrt{x^{2} - a^{2} } - \dfrac{a^{2} }{2} .cosh^{-1} \dfrac{x}{a} + c.⟹∫

x

2

−a

2

dx=

2

x

x

2

−a

2

2

a

2

.cosh

−1

a

x

+c.

\sf \implies \int \dfrac{1}{x\sqrt{x^{2} - a^{2} } } dx = \dfrac{1}{a} sec^{-1} \dfrac{x}{a} + c.⟹∫

x

x

2

−a

2

1

dx=

a

1

sec

−1

a

x

+c.

\sf \implies \int e^{ax} sin bx dx = \dfrac{e^{ax} }{a^{2}+ b^{2} } (a sinbx - b cosbx) + c = \dfrac{e^{ax} }{\sqrt{a^{2} + b^{2} } } sin \bigg(bx - tan^{-1}\dfrac{b}{a}\bigg) + c⟹∫e

ax

sinbxdx=

a

2

+b

2

e

ax

(asinbx−bcosbx)+c=

a

2

+b

2

e

ax

sin(bx−tan

−1

a

b

)+c

\sf \implies \int e^{ax} cos bx dx = \dfrac{e^{ax} }{a^{2}+ b^{2} } (a cos bx + b sin bx ) + c = \dfrac{e^{ax} }{\sqrt{a^{2} + b^{2} } } cos \bigg(bx - tan^{-1} \dfrac{b}{a} \bigg) + c⟹∫e

ax

cosbxdx=

a

2

+b

2

e

ax

(acosbx+bsinbx)+c=

a

2

+b

2

e

ax

cos(bx−tan

−1

a

b

)+c

hoe it's help you

Similar questions