Please solve this ASAP
and please no fake answers
Answers
EXPLANATION.
Using the formula ⇒ cos²x = 1 - sin²x.
Using the formula ⇒ Sin2x = 2Sinx.Cosx.
By using the Substitution method, we get.
Substitute = a + (sin²x(b - a)) = t.
Differentiate w.r.t x, we get.
⇒ 0 + (b - a)(2SinxCosx)dx = dt.
⇒ (2Sinx.Cosx)dx = dt/(b - a).
Substitute the value in equation, we get.
As we know that,
⇒ (b - a) is a constant term,
As we know that,
⇒ ∫dt/t = ㏒ | t | + c.
Put the value of t in equation, we get.
MORE INFORMATION.
Integration of Trigonometric functions,
(1) = ∫P(sin(x)) + q.(cos(x))dx/a sin(x) + b cos(x).
(2) = ∫p(sin(x))dx/a sin(x) + b cos(x).
(3) = ∫q cos(x)/a sin(x) + b cos(x).
For their integration, we first express Nr. as follows,
Nr = A(Dr) + B(derivative of Dr).
Then integral = Ax + B ㏒(Dr) + c.
Answer:
EXPLANATION.
\sf \implies \int \dfrac{sin2xdx}{acos^{2}x + bsin^{2} x }⟹∫
acos
2
x+bsin
2
x
sin2xdx
Using the formula ⇒ cos²x = 1 - sin²x.
\sf \implies \int \dfrac{Sin2xdx}{a(1 - sin^{2}x )+ bsin^{2} x }⟹∫
a(1−sin
2
x)+bsin
2
x
Sin2xdx
\sf \implies \int \dfrac{Sin2xdx}{a - asin^{2}x + bsin^{2}x }⟹∫
a−asin
2
x+bsin
2
x
Sin2xdx
\sf \implies \int\dfrac{Sin2xdx}{a + sin^{2}x(b - a) }⟹∫
a+sin
2
x(b−a)
Sin2xdx
Using the formula ⇒ Sin2x = 2Sinx.Cosx.
\sf \implies \int \dfrac{(2Sinx.Cosx)dx}{a + sin^{2}x(b - a) }⟹∫
a+sin
2
x(b−a)
(2Sinx.Cosx)dx
By using the Substitution method, we get.
Substitute = a + (sin²x(b - a)) = t.
Differentiate w.r.t x, we get.
⇒ 0 + (b - a)(2SinxCosx)dx = dt.
⇒ (2Sinx.Cosx)dx = dt/(b - a).
Substitute the value in equation, we get.
\sf \implies \int \dfrac{dt}{t(b - a)}⟹∫
t(b−a)
dt
As we know that,
⇒ (b - a) is a constant term,
\sf \implies \dfrac{1}{(b - a)} \int \dfrac{dt}{t}⟹
(b−a)
1
∫
t
dt
As we know that,
⇒ ∫dt/t = ㏒ | t | + c.
\sf \implies \dfrac{1}{(b - a)} log | t | + c⟹
(b−a)
1
log∣t∣+c
Put the value of t in equation, we get.
\sf \implies \dfrac{1}{(b - a)} log | a + (b - a)sin^{2}x | + c⟹
(b−a)
1
log∣a+(b−a)sin
2
x∣+c