Math, asked by abhijeetvshkrma, 4 months ago

Please solve this ASAP
and please no fake answers

Attachments:

Answers

Answered by Asterinn
8

   \rm \longrightarrow\displaystyle  \large\int \dfrac{1}{ \rm {e}^{x}  +  {e}^{ - x} } \rm \: dx  \\  \\  \\  \rm \longrightarrow\displaystyle\large \int \dfrac{1}{ \rm {e}^{x}  + \dfrac{1}{{e}^{  x}}    } \rm \: dx  \\   \\ \\  \rm \longrightarrow\displaystyle\large \int \dfrac{1}{ \rm  \dfrac{{e}^{2x } + 1}{{e}^{  x}}    } \rm \: dx  \\ \\   \\  \rm \longrightarrow\displaystyle\large \int \dfrac{ \rm{e}^{  x} \: dx}{ \rm{e}^{2  x} + 1   }  \\  \\ \rm let \: {e}^{  x} = t \\ \rm {e}^{  x} dx= dt \\  \\  \\ \rm \longrightarrow\displaystyle\large \int \: \rm  \dfrac{dt}{ {t}^{2}  + 1}  \\  \\  \\ \rm \longrightarrow  {tan}^{ - 1} t + c \\ \\   \rm now \: put \: t = {e}^{  x}\\  \\  \\ \rm \longrightarrow  {tan}^{ - 1} {e}^{  x} + c

Answered by uttamsalunkhe671
1

Answer:

⟶∫

e

x

+e

−x

1

dx

⟶∫

e

x

+

e

x

1

1

dx

⟶∫

e

x

e

2x

+1

1

dx

⟶∫

e

2x

+1

e

x

dx

lete

x

=t

e

x

dx=dt

⟶∫

t

2

+1

dt

⟶tan

−1

t+c

nowputt=e

x

⟶tan

−1

e

x

+c

Similar questions