Math, asked by abhijeetvshkrma, 3 months ago

Please solve this ASAP
and please no fake answers

Attachments:

Answers

Answered by Asterinn
12

  \rm\longrightarrow  \displaystyle  \large\int \rm \:  \frac{sin \: x}{ {a}^{2} +  {b}^{2}   \: {cos}^{2} x } \:  dx \\  \\  \rm let  \:  \: cos \: x = t \\  \rm - sin \: x \: dx =dt \\  \\  \\ \rm\longrightarrow  \displaystyle  \large\int \rm \:  \dfrac{ - dt}{ {a}^{2} +  {b}^{2}   \: {t}^{2} } \:  \\  \\  \\ \rm\longrightarrow  \displaystyle  \large - \dfrac{1}{{b}^{2}}\large\int \rm \:  \dfrac{  dt}{  \dfrac{{a}^{2} }{{b}^{2}} +     \: {t}^{2} } \:  \\  \\  \\ \rm\longrightarrow  \displaystyle  \large -  \rm \dfrac{1}{{b}^{2}}\rm \times  \dfrac{b}{a}  \times  {tan}^{ - 1}   \bigg(\dfrac{t \: b}{a}  \bigg) + c\\  \\  \\ \rm\longrightarrow  \displaystyle  \large \rm \dfrac{ - 1}{{ab}} \times  {tan}^{ - 1}   \bigg(\dfrac{t \: b}{a}  \bigg) + c\\   \\ \\  \rm \: now \:  put \: \:  t \:  = cos \: x \\  \\ \\  \rm\longrightarrow  \displaystyle  \large \rm \dfrac{ - 1}{{ab}}  \:  \:  \: {tan}^{ - 1}   \bigg(\dfrac{ b \: cos \: x}{a}  \bigg) + c

Attachments:

TheValkyrie: Perfect!
abhijeetvshkrma: thanks you so much
assingh: Awesome Answer!
Asterinn: thank you :)
Anonymous: Nice answer Di
Similar questions