Math, asked by abhijeetvshkrma, 4 months ago

Please solve this ASAP
and please no fake answers

Attachments:

senboni123456: class 11

Answers

Answered by IdyllicAurora
11

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Integration by parts has been used. We see we are given an expression to integrate. Firstly we split the expression into two parts. Then we will integrate both parts separately by rule of integration to find the answer.

Let's do it !!

______________________________________________

Identity Used :-

\\\;\displaystyle{\boxed{\sf{\pink{\int\:u\:v\:dx\;=\;\bf{u\int v\:dx\;-\;\int u'\bigg(\int v\:dx\bigg)dx}}}}}

______________________________________________

Solution :-

Given,

\\\;\displaystyle{\bf{\green{\int\:\sec^{3}x\:dx}}}

This can be written as,

\\\;\displaystyle{\bf{\int\:\sec\:x\:\sec^{2}\:x\:dx}}

Now firstly let's split this.

  • u = sec x

  • dv = sec² x dxdx

From this,

» du = sec x tan x dx

And,

» v = tan x

Now we already know the identity that,

\\\;\displaystyle{\sf{\int\:u\:v\:dx\;=\;\bf{u\int v\:dx\;-\;\int u'\bigg(\int v\:dx\bigg)dx}}}

By applying this identity into the equation, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec\:x\:\sec^{2}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\int \sec\:x\;\tan^{2}\:x\:dx}}}

This can be written as,

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\int \sec\:x\;\tan^{2}\:x\:dx}}}

We know that,

tan² x = sec² x - 1

On applying this here, we get

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\int \sec\:x\;(\sec^{2}\:x\;-\;1)\:dx}}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\int\:(\sec^{3}\:x\;-\;\sec\:x)\:dx}}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\int\:\sec^{3}\:x\:dx\;-\;\sec\:x\:dx}}}

Now we can integrate as,

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;-\;\sec^{3}\:x\:dx\;+\;\int\:\sec\:x\:dx}}}

On transposing the like terms,

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;+\;\sec^{3}\:x\:dx\;=\;\bf{\sec\:x\;\tan\:x\;+\;\int\:\sec\:x\:dx}}}

\\\;\displaystyle{\sf{\rightarrow\;\;2\bigg(\int\:\sec^{3}\:x\:dx\bigg)\;=\;\bf{\sec\:x\;\tan\:x\;+\;\int\:\sec\:x\:dx}}}

On integrating,

\\\;\displaystyle{\sf{\rightarrow\;\;2\bigg(\int\:\sec^{3}\:x\:dx\bigg)\;=\;\bf{\sec\:x\;\tan\:x\;+\;In\big|\sec\:x\;+\;\tan\:x\big|\;+\;c_{1}}}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\bigg(\dfrac{\sec\:x\;\tan\:x\;+\;In\big|\sec\:x\;+\;\tan\:x\big|\;+\;c_{1}}{2}\bigg)}}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\dfrac{\sec\:x\;\tan\:x}{2}\;+\dfrac{\;In\big|\sec\:x\;+\;\tan\:x\big|}{2}\;+\;\dfrac{c_{1}}{2}}}}

\\\;\displaystyle{\sf{\rightarrow\;\;\int\:\sec^{3}\:x\:dx\;=\;\bf{\red{\dfrac{1}{2}(\sec\:x\;\tan\:x)\;+\dfrac{1}{2}(In\big|\sec\:x\;+\;\tan\:x\big|)\;+\;C}}}}

\\\;\underline{\boxed{\tt{Required\:\;Integration\;=\;\bf{\purple{\dfrac{1}{2}(\sec\:x\;\tan\:x)\;+\dfrac{1}{2}(In\big|\sec\:x\;+\;\tan\:x\big|)\;+\;C}}}}}


Anonymous: nice answer :)
IdyllicAurora: Thanks :)
Anonymous: ☺️
Weeeeeeex: hey mate you've written "In" not "ln" i mean you've written "eie n" not "ell n"
IdyllicAurora: @Saloni... i have used another font which in greek shows 'In' only. 'In' is a function derived from greek mathematical function.
Answered by uttamsalunkhe671
1

Step-by-step explanation:

Here the concept of Integration by parts has been used. We see we are given an expression to integrate. Firstly we split the expression into two parts. Then we will integrate both parts separately by rule of integration to find the answer.

Let's do it !!

Similar questions