Math, asked by abhijeetvshkrma, 5 months ago

Please solve this ASAP
and plese don't post fake answer ​

Attachments:

Answers

Answered by PᴀʀᴛʜTʀɪᴘᴀᴛʜɪ
7

Answer:

Mate I Have Done The Correct Solution For You..

Step-by-step explanation:

Hope it Helps uh in your studies..

Thank you..❤️

Attachments:
Answered by Flaunt
133

Question

 \sf\large \displaystyle \int \dfrac{ {e}^{5log_{e}x}  -  {e}^{4log_{e}x} }{ {e}^{3log_{e}x}-  {e}^{2log_{e}x}  }

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

 \sf\large=  > \displaystyle \int \dfrac{ {e}^{5log_{e}x}  -  {e}^{4log_{e}x} }{ {e}^{3log_{e}x}-  {e}^{2log_{e}x}  }

\sf\large\boxed{mlogn =  {logn}^{m}}

\sf\large=  >\displaystyle  \int \dfrac{ {e}^{log {x}^{5} }  -  {e}^{log {x}^{4} } }{ {e}^{log {x}^{3} } -  {e}^{log {x}^{2} }  } dx

\sf\large=  > \displaystyle \int \dfrac{ {x}^{5} -  {x}^{4}  }{ {x}^{3} -  {x}^{2}  } dx

\large=  >\displaystyle  \int \dfrac{ {x}^{4} (x - 1)}{ {x}^{2}(x - 1) } dx

\large=  > \displaystyle \int \dfrac{ {x}^{4} }{ {x}^{2} }  =  \int {x}^{2} dx

 \sf\boxed{{x}^{n} dx =  \dfrac{ {x}^{n + 1} }{n + 1}  + c}

 \sf\large\bold{\red{=  \dfrac{ {x}^{3} }{3}  + c}}


abhijeetvshkrma: Thank you bro :)
Flaunt: :)
Similar questions