Math, asked by neeta187, 28 days ago

please solve this by properties of proportion

Attachments:

Answers

Answered by suhail2070
0

Answer:

\frac{a + c}{b + d}  =  \sqrt{ \frac{ {a}^{2} +  {c}^{2}  }{ {b}^{2} +  {d}^{2}  } }  \\  \\ hence \:  \:  \: proved.

Step-by-step explanation:

 \frac{a}{b}  =  \frac{c}{d}  \\  \\  \frac{a}{c}  =  \frac{b}{d}  \\  \\  \\ by \: applying \: componendo \:   \:  \:  \\  \\  \frac{a + c}{c}  =  \frac{b + d}{d}  \\  \\  \frac{a + c}{b + d}  =  \frac{c}{d}   \:  \:  \:  \:  \: equation \:  \: (i) \\  \\  \\  \\  \\  \\ again \:  \:  \:  \frac{a}{b}  =  \frac{c}{d}  \\  \\  \\  \frac{a}{c}  =  \frac{b}{d}  \\  \\  \frac{ {a}^{2} }{ {c}^{2} }  =  \frac{ {b}^{2} }{ {d}^{2} }  \\  \\  \\ by \: applying \:  \: componendo \\  \\  \\  \frac{ {a}^{2} +  {c}^{2}  }{ {c}^{2} }  =  \frac{ {b}^{2}  +  {d}^{2} }{ {d}^{2} }  \\  \\  \\  \frac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} }  =  \frac{ {c}^{2} }{ {d}^{2} }  \\  \\  \sqrt{ \frac{ {a}^{2}  +  {c}^{2} }{ {b}^{2}  +  {d}^{2} } }  =  \frac{c}{d}  \:  \:  \:  \: equation \:  \:  \:  \: (ii) \\  \\  \\ equating \:  \:  \:( i) \:  \:  \: and \:  \: (ii) \\  \\  \\  \\  \\  \\  \frac{a + c}{b + d}  =  \sqrt{ \frac{ {a}^{2} +  {c}^{2}  }{ {b}^{2} +  {d}^{2}  } }  \\  \\ hence \:  \:  \: proved.

Similar questions