Math, asked by majesty10, 8 months ago

please solve this.
Chapter- Expansions​

Attachments:

Answers

Answered by Anonymous
1

Answer:

lets \:  \:  first \:  \: find \:  \: the \:  \: value \:  \: of \: x \\ x -  \frac{1}{x}  =  \sqrt{5}  \\ squaring \:  \: both \:  \: sides \\ (x -  \frac{1}{x} {)}^{2}   = ( \sqrt{5}  {)}^{2}   \\ \\ we \:  \: will \:  \: use \:  \: this \:  \: identity \: \:  now \\ (x - y {)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy  \\ \\ (x {)}^{2}   +  ( \frac{1}{x}  {)}^{2}  - 2 \times x \times  \frac{1}{x}  = 5 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 5 \\  {x}^{2}  +  \frac{1}{{x}^{2} } = 5 + 2\\  {x}^{2}   +  \frac{1}{ {x}^{2} }  = 7 \:  \:  \:  \\ this \:  \: is \:  \: the \:  \: answer \:  \: of \:  \: first \:  \\ part \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 \\ (x + \frac{1}{x}  {)}^{2}  = 7 \\ x +  \frac{1}{x}  =  \sqrt{7}

I hope it will help you

Answered by XxxRAJxxX
1

Answer:

Answer :-

(i)  x^2 + \frac{1}{x^2} = 7

(ii)  x + \frac{1}{x} = \sqrt{7}

Similar questions