Math, asked by sanvi2004, 1 year ago

please solve this class 9 question ​

Attachments:

Answers

Answered by NeelamG
1

a =  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \:  \: and \:  b =  \frac{ \sqrt{5 }  -  \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }

we \: have \: to \: find \:  \frac{ {a}^{2}  + ab +  {b}^{2} }{ {a}^{2}  - ab -  {b}^{2} }  \:  =  \frac{( {a + b})^{2} }{({a - b})^{2} }

a + b =  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }  +  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  +  \sqrt{2} }  \\  a + b =  \frac{ ({ \sqrt{5} +  \sqrt{2}  })^{2}  +  ({ \sqrt{5}  -  \sqrt{2} })^{2} }{( \sqrt{5 } -  \sqrt{2} )( \sqrt{5} +  \sqrt{2}  )}  =  \frac{14}{3}  \\

a - b \:  =  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  -  \sqrt{2} }  -  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}  }  \\ a - b \:  =  \frac{ { (\sqrt{5} +  \sqrt{2}  )}^{2}  -   {( \sqrt{5} -  \sqrt{2}  )}^{2}  }{( \sqrt{5} +  \sqrt{2}  )( \sqrt{5}  -  \sqrt{2}) }  \\ a - b =  \frac{2 \sqrt{10} }{3}  \\ ( {a - b})^{2}  =  \frac{40}{9}  \\(  {a + b})^{2}  =  \frac{196}{9}

 \frac{ ({a + b})^{2} }{( {a - b})^{2} }  =  \frac{196}{9}  \times  \frac{9}{40}  \\  =  \frac{49}{10}  = 4.9


NeelamG: i hope it will help u
sanvi2004: thank u ma'am
sanvi2004: I am pleased
NeelamG: its my pleasure
NeelamG: @sanvi
Similar questions