Math, asked by CarryKaYoda, 9 months ago

please solve this
correct answer will get brainest and incorrect will be reported​

Attachments:

Answers

Answered by Anonymous
3

Answer:

CRM

PLEASE CHECK YR ANSWER CAREFULLY

HOPE IT HELPS TO U

PLEASE MARK ME AS BRAINLIST

Attachments:
Answered by amansharma264
7

 \bf \to \: { \underline{given \div }}

 \rm \to \: f(x) =  \dfrac{ \alpha x}{x + 1} \:  ,  x  \ne \:  - 1

 \rm \to \: then \: write \: the \: value \: of \:  \alpha  \: satisfying \:  \\  \\  \rm \to \: f(f(x)) \:  = x \: ,   \forall \: x \:  \ne \:  - 1

 \bf \to \:{ \underline{solution \div }}

 \rm \to \: f(x) \:  =  \dfrac{ \alpha x}{x + 1} ,   \: x \ne \: 1

 \rm \to \: f(f(x)) = x

  \rm \to \: put \: the \: value \: of \: f(x) \:

 \rm \to \:  \dfrac{ \alpha f(x)}{f(x) + 1}  = x

 \rm \to \:  \frac{ \alpha ( \dfrac{ \alpha x}{x + 1}) }{ (\dfrac{ \alpha x}{x + 1})  + 1}   = x

 \rm \to \:  \dfrac{ \frac{ { \alpha }^{2}x }{x + 1} }{ \dfrac{ \alpha x + x + 1}{x + 1} }  = x

 \rm \to \:  \dfrac{ \alpha  {}^{2}x }{ \alpha x + x + 1}  = x

 \rm \to \:  { \alpha }^{2}  =  \alpha x + x + 1

 \rm \to \:  { \alpha }^{2} -  \alpha x - x - 1 = 0

 \rm \to \:  { \alpha }^{2}  -  \alpha  x - (x \:  +  \: 1) = 0

 \rm \to \: d \:  =  {b}^{2} - 4ac

 \rm \to \: ( - x) {}^{2}  - 4(1)(x + 1) = 0

 \rm \to \:  {x}^{2}  + 4x + 4 = 0

 \rm \to \:  {x}^{2} + 2x + 2x + 4 = 0

 \rm \to \: x(x + 2) + 2(x + 2) = 0

 \rm \to \: (x + 2) {}^{2} = 0

 \rm \to \: x \:  =  \dfrac{ - b \pm \:  \sqrt{d} }{2a}

 \rm \to \: x \:  =  \dfrac{x +  \sqrt{(x + 2) {}^{2} } }{2}

 \rm \to \: x \:  =  \dfrac{x + x + 2}{2}

 \rm \to \: x \:  = x + 1

 \rm \to \: x \:  =  \dfrac{x - x  -  2}{2}

 \rm \to \: x \:  =  - 1

Therefore,

value of a = x + 1 , -1

Similar questions