Math, asked by songadda050, 5 months ago

Please solve this correct ....I will mark the correct answer as brainliest and thank him / her .... question is given in the attachment​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

2.(a).

We have,

y = (3x + 8)^{ \frac{7}{3} } (x + 7)^{ - 3}

 \implies ln(y)  =  \frac{7}{3}  ln(3x + 8)   - 3 ln(x + 7)  \\

Differentiating both sides w.r.t x , we have,

 \implies \frac{1}{y}  \frac{dy}{dx}  =  \frac{7}{3(3x + 8)}  -  \frac{3}{x + 7}  \\

 \implies \frac{dy}{dx}  = y( \frac{21(x + 7) - 9(3x +8 )}{3(3x + 8)(x + 7)} ) \\

 \implies \frac{dy}{dx} = y. \frac{21x + 147 - 27x - 72}{3(3x + 8)(x + 7)}  \\

 \implies \frac{dy}{dx} = y. \frac{( - 2x + 25)}{(3x + 8)(x + 7)}  \\

 \implies \frac{dy}{dx} = (3x + 8)^{ \frac{7}{3} } (x + 7)^{ - 3}  \times \frac{( - 2x + 25)}{(3x + 8)(x + 7)}   \\

 \implies \frac{dy}{dx} = -  (3x + 8)^{ \frac{4}{3} } (x + 7)^{ - 4}( 2x - 25) \\

Similar questions