Math, asked by morankhiraj, 5 months ago

Please solve this equation Given A = [ ⅛ ⅓ ], Evaluate A² - 4A​


morankhiraj: mm
morankhiraj: ok
morankhiraj: thank you
morankhiraj: ok
morankhiraj: than
morankhiraj: ok
morankhiraj: no sorry and no thank you

Answers

Answered by mathdude500
3

 \large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:If  \: A =  \begin{bmatrix} 1 & 1\\ 8 &  3\end{bmatrix}, \: Find  \:  {A}^{2}  - 4A

\large\underline\purple{\bold{Solution :-  }}

\large \blue{\bf \:A = \begin{bmatrix} 1 & 1\\ 8 &  3\end{bmatrix}}

☆So,

\large \blue{\bf \:  ⟼  {A}^{2}  = A \times A}

\bf \:  ⟼  {A}^{2}  = \begin{bmatrix} 1 & 1\\ 8 &  3\end{bmatrix} \times \begin{bmatrix} 1 & 1\\ 8 &  3\end{bmatrix}

\bf \:  ⟼  {A}^{2}  = \begin{bmatrix} 1 + 8 & 1 + 3\\ 8 + 24 &  8 + 9\end{bmatrix}

\bf \:  ⟼  {A}^{2}  = \begin{bmatrix} 9 & 4\\ 32 &  17\end{bmatrix}

To evaluate,

\large \purple{\bf \: {A}^{2} - 4A }

\bf \:  ⟼ \begin{bmatrix} 9 & 4\\ 32 &  17\end{bmatrix} - 4\begin{bmatrix} 1 & 1\\ 8 &  3\end{bmatrix}

\bf \:  ⟼ \begin{bmatrix} 9 & 4\\ 32 &  17\end{bmatrix} - \begin{bmatrix} 4 & 4\\ 32 &  12\end{bmatrix}

\bf \:  ⟼ \begin{bmatrix} 9 - 4 & 4 - 4\\ 32 - 32 &  17 - 12\end{bmatrix}

\bf \:  ⟼ \begin{bmatrix} 5 & 0\\ 0 &  5\end{bmatrix}

\large{\boxed{\boxed{\bf{Hence,  {A}^{2} - 4A = \begin{bmatrix} 5 & 0\\ 0 &  5\end{bmatrix} }}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Answered by AestheticBrainlyUser
2

GivenQuestion:−

\begin{gathered}\bf \:If \: A = \begin{bmatrix} 1 & 1\\ 8 & 3\end{bmatrix}, \: Find \: {A}^{2} - 4A\end{gathered}IfA=[1813],FindA2−4A

\large\underline\purple{\bold{Solution :- }}Solution:−

\begin{gathered}\large \blue{\bf \:A = \begin{bmatrix} 1 & 1\\ 8 & 3\end{bmatrix}}\end{gathered}A=[1813]

☆So,

\large \blue{\bf \:  ⟼ {A}^{2} = A \times A} ⟼A2=A×A

\begin{gathered}\bf \:  ⟼ {A}^{2} = \begin{bmatrix} 1 & 1\\ 8 & 3\end{bmatrix} \times \begin{bmatrix} 1 & 1\\ 8 & 3\end{bmatrix}\end{gathered} ⟼A2=[1813]×[1813]

\begin{gathered}\bf \:  ⟼ {A}^{2} = \begin{bmatrix} 1 + 8 & 1 + 3\\ 8 + 24 & 8 + 9\end{bmatrix}\end{gathered} ⟼A2=[1+88+241+38+9]

\begin{gathered}\bf \:  ⟼ {A}^{2} = \begin{bmatrix} 9 & 4\\ 32 & 17\end{bmatrix}\end{gathered} ⟼A2=[932417]

☆To evaluate,

\large \purple{\bf \: {A}^{2} - 4A }A2−4A

\begin{gathered}\bf \:  ⟼ \begin{bmatrix} 9 & 4\\ 32 & 17\end{bmatrix} - 4\begin{bmatrix} 1 & 1\\ 8 & 3\end{bmatrix}\end{gathered} ⟼[932417]−4[1813]

\begin{gathered}\bf \:  ⟼ \begin{bmatrix} 9 & 4\\ 32 & 17\end{bmatrix} - \begin{bmatrix} 4 & 4\\ 32 & 12\end{bmatrix}\end{gathered} ⟼[932417]−[432412]

\begin{gathered}\bf \:  ⟼ \begin{bmatrix} 9 - 4 & 4 - 4\\ 32 - 32 & 17 - 12\end{bmatrix}\end{gathered} ⟼[9−432−324−417−12]

\begin{gathered}\bf \:  ⟼ \begin{bmatrix} 5 & 0\\ 0 & 5\end{bmatrix}\end{gathered} ⟼[5005]

\begin{gathered}\large{\boxed{\boxed{\bf{Hence, {A}^{2} - 4A = \begin{bmatrix} 5 & 0\\ 0 & 5\end{bmatrix} }}}}\end{gathered}Hence,A2−4A=[5005]

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions