Math, asked by rk2349349, 2 months ago

please solve this equation in five minutes it is very very compulsory.please solve this problem​

Attachments:

Answers

Answered by Anonymous
2

Step-by-step explanation:

 \tt \bigg(  \frac{ {x}^{a + b} }{ {x}^{c} } \bigg) ^{a - b}   \times  \bigg( \frac{x {}^{b + c} }{ {x}^{a} }  \bigg) ^{b - c}  \times  \bigg( \frac{x {}^{c + a} }{ {x}^{b} }  \bigg)^{c - a}   \\  \dashrightarrow \tt \: ( {x}^{a + b - c} ) ^{a - b}  \times ( {x}^{b + c - a} ) ^{b - c}\times  ( {x}^{c + a - b} ) ^{c - a}  \:  \: \bigg [  \since \frac{ {x}^{a} }{ {x}^{b} }   =  {x}^{a - b}  \bigg] \\ \dashrightarrow \tt x ^{(a + b - c)(a - b)}  \times  {x}^{(b + c - a)(b - c)}  \times  {x}^{(c +a - b)(c - a) }  \bigg[\since ( {x}^{a} ) ^{b}  = x {}^{a \times b}  =  {x}^{ab} \bigg ] \\ \dashrightarrow \tt \: x {}^{( {a }^{2} - ab - ac -  {b}^{2}  + bc)  } \times  {x}^{ ({b}^{2}  - ab -  {c}^{2} + ac) }  \times x ^{( {c}^{2}  - bc -  {a}^{2} + ab) } \\ \dashrightarrow \tt \: x {}^{( {a}^{2} - ab - ac -  {b}^{2}   + bc +  {b}^{2}  - ab -  {c}^{2}  + ac +  {c}^{2}  - bc -  {a}^{2} + ab) }  \bigg[\since {x}^{a}   \times  {x}^{b}  =  {x}^{(a + b)}\bigg ] \\  \dashrightarrow \tt {x}^{0} \\  \dashrightarrow \tt1

Hence proved

Similar questions