Math, asked by dana2007, 1 month ago

please solve this expansion

(x - 2y – z)²​

Answers

Answered by mathdude500
2

\large\underline{\sf{To\:evaluate - }}

 \red{\rm :\longmapsto\: {(x - 2y - z)}^{2} }

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\: {(x - 2y - z)}^{2}

We know,

\boxed{ \sf{ \:  {(a + b + c)}^{2} =  {a}^{2}  +  {b}^{2} +  {c}^{2}  + 2ab + 2 bc+ 2ca}}

So,

Here,

\rm :\longmapsto\:a = x

\rm :\longmapsto\:b =  - 2y

\rm :\longmapsto\:c =  - z

So, on substituting the values, we get

\rm :\longmapsto\: {(x - 2y - z)}^{2}

\rm \:  =  \: {x}^{2} +  {( - 2y)}^{2} +  {( - z)}^{2} + 2(x)( - 2y) + 2( - 2y)( - z) + 2( - z)x

\rm \:  =  {x}^{2} +  {4y}^{2} +  {z}^{2} - 4xy   +  4yz - 2zx

Additional Information :-

More Identities to know :-

\boxed{ \bf{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{3} =  {x}^{3}  -  {y}^{3}  -  3xy(x - y)}}

\boxed{ \bf{ \:  {(x  +  y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x  +  y)}}

\boxed{ \bf{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}

\boxed{ \bf{ \:  {x}^{3} - {y}^{3} = (x - y)( {x}^{2}  + xy +  {y}^{2})}}

\boxed{ \bf{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

Similar questions