Physics, asked by samimpapa354, 7 months ago

please solve this fast...​

Attachments:

Answers

Answered by ShivamKashyap08
26

Answer:

  • The dimensions of a is L T⁻²
  • The dimensions of b is L
  • The dimensions of c is T

Given:

  1. \sf v=at+\dfrac{b}{t+c}

Explanation:

\rule{300}{1.5}

From principle of homogeneity we know that same quantities can only be added,therefore the dimensional formula of v should be equal to at and \textsf{\textbf{$\dfrac{\text b}{\text{t + c}}$}} individually.

Now, lets find the dimension of "a"

\displaystyle\longrightarrow\sf \Big[v\Big]=\Big[a\Big]\;\Big[t\Big]\\\\\\\longrightarrow\sf \bigg[L\;T^{-1}\bigg]=\Big[a\Big]\;\Big[T\Big]\\\\\\\longrightarrow\sf \Big[a\Big]=\dfrac{\bigg[L\;T^{-1}\bigg]}{\Big[T\Big]}\\\\\\\longrightarrow\sf \Big[a\Big] = \bigg[L\;T^{-1}\bigg]\; \Big[T^{-1}\Big]\\\\\\\longrightarrow\sf \Big[a\Big]=\bigg[L\;T^{-2}\bigg]\\\\\\\longrightarrow \large{\underline{\boxed{\textsf{\textbf{\Big[a\Big]=\bigg[L\;T$^{\text{ -2}}$\bigg]}}}}}

The dimensions of a is L T⁻².

\rule{300}{1.5}

\rule{300}{1.5}

Now lets find dimensions of "c"

According to principle,

\displaystyle\longrightarrow\sf \Big[c\Big]=\Big[t\Big]\\\\\\\longrightarrow\sf \Big[c\Big]=\Big[T\Big]\\\\\\\longrightarrow \large{\underline{\boxed{\textsf{\textbf{\Big[c\Big]=\Big[T\Big]}}}}}

The dimensions of c is T.

\rule{300}{1.5}

\rule{300}{1.5}

Now lets find dimensions of "b",

\displaystyle\longrightarrow\sf \Big[v\Big]=\dfrac{\Big[b\Big]}{\Big[t\Big]}\\\\\\\longrightarrow\sf \Big[LT^{-1}\Big]=\dfrac{\Big[b\Big]}{\Big[T\Big]}\\\\\\\longrightarrow\sf \Big[b\Big]=\Big[LT^{-1}\Big]\;\Big[T\Big]\\\\\\\longrightarrow\sf \Big[b\Big]=\Big[L\Big]\\\\\\\longrightarrow \large{\underline{\boxed{\textsf{\textbf{\Big[b\Big]=\Big[L\Big]}}}}}

The dimensions of b is L.

\rule{300}{1.5}

Answered by Adityaanand20
36

 Questions:-

  •  If \: \: velocity \: \: v \: \: = \: \: {at} \: + \: \frac{b}{t \: + \: c} \: \: where \: \: \: t ⟹ \: \: time \: \: and \: \: a, \: \: b, \: \: c \: \: ⟹ constants \: \: then \: \: find \: \: the \: \: dimensions \: \: of \: \: a, \: \: b, \: \: and \: \: c.

 Given:-

  •  velocity \: \: v \: \: = \: \: {at} \: + \: \frac{b}{t \: + \: c}

  •  a, \: \: b, \: \: c \: \: = constants

 To \: \: Find:-

  •  find \: \: dimensions \: \: of \: \: a, \: \: b, \: \: and \: \: c.

 Solutions:-

 \: \: \: \: \: {[v]} \: \: = \: \: {[at]} \: \: + \: \: {[\frac{b}{t \: + \: c}]}

 \: \: \: \: \: {[v]} \: \: = \: \: {[at]} \: \: = \: \: {[\frac{b}{t \: + \: c}]}

 \: \: \: \: \: {[a]} \: \: = \: \: \frac{[v]}{[t]} \: \: = \: \: \frac{[{L}^{1} \: \: {T}^{-1}]}{[{T}^{1}]} \: \: = \: \: {[{L}^{1} \: \: {T}^{-2}]}

The \: \: dimensions \: \: a \: \: is \: \: {[{L} \: \: {T}^{-2}]}

 \: \: \: \: \: {[t \: + \: c]} \: \: = \: \: {[T]} \: \: = \: \: {[c]}

 \: \: \: \: \: {[c]} \: \: = \: \: {[T]}

 The \: \: dimensions \: \: c \: \: is \: \: {[T]}

 \: \: \: \: \: {[v]} \: \: = \: \: {[\frac{b}{t \: + \: c}]}

 \: \: \: \: \: {[b]} \: \: = \: \: {[v]} \: × \: {[{T}^{1}]}

 \: \: \: \: \: {[b]} \: \: = \: \: {[{L}^{1} \: \: {T}^{-1}]} \: × \: {[{T}^{1}]}

 \: \: \: \: \: {[b]} \: \: = \: \: {[{L}^{1}]}

 The \: \: dimensions \: \: b \: \: is \: \: {[{L}^{1}]}

 \: \: \: \: \: ⟹ a \: \: = \: \: {[{L} \: \: {T}^{-2}]}

 \: \: \: \: \: ⟹ b \: \: = \: \: {[L]}

 \: \: \: \: \: ⟹ c \: \: = \: \: {[T]}

 So,

 \: \: \: \: \: the \: \: dimensions \: \: of \: \: a, \: \: b, \: \: and \: \: c \: \: is \: \: {[{L} \: \: {T}^{-2}]}, \: \: {[L]}, \: \: and \: \: {[T]}

______________________________________

Similar questions