Math, asked by avantika8097, 4 months ago

please solve this fast ​

Attachments:

Answers

Answered by Sirat4
1

Answer:

∠3 = ∠1 (vertically opposite angles)

∠3 = 135°

∠5 = ∠3  (alternate interior angle)

∠5 = 135°

∠7 = ∠5 (V.O.A)

∠7 = 135°

∠7 + ∠8 = 180°  (sum of linear angles = 180°)

135° + ∠8 = 180°

∠8 = 180° - 135°

∠8 =  45°

∠6 = ∠8  (V.O.A)

∠6 = 45°

∠4 + ∠3 = 180°

∠4 + 135° = 180°

∠4 = 180° - 135°

∠4 = 45°

∠2 = ∠4  (V.O.A)

∠2 = 45°

Answered by tanmayakumarp3
3

Step-by-step explanation:

Given,

That ∠1 = 135°

So,                ∠1  = ∠3 = 135°               [∵Vertical opposite angles]

                    ∠1 = ∠5 = 135°                [∵ Corresponding angles]

                    ∠5 = ∠7 = 135°                [∵ Vertical opposite angles]

Then,           ∠1 + ∠2 =  180°                [∵ Linear pair]

               => 135° + ∠2 = 180°

               => ∠2 = 180° - 135°

                          = 45°

Also,           ∠2 = ∠4 = 45°            [∵ Vertical Opposite angles]

                   ∠2 = ∠6 = 45°            [∵ Corresponding angles]

                   ∠6 = ∠8 = 45°           [∵ Vertical Opposite angles]

Hence, ∠2 = 45°, ∠3 = 135°, ∠4 = 45°, ∠5 = 135°, ∠6  = 45° , ∠7 = 135° and ∠8 = 45° (Ans)

Similar questions