please solve this fast
Answers
Answer:
∠3 = ∠1 (vertically opposite angles)
∠3 = 135°
∠5 = ∠3 (alternate interior angle)
∠5 = 135°
∠7 = ∠5 (V.O.A)
∠7 = 135°
∠7 + ∠8 = 180° (sum of linear angles = 180°)
135° + ∠8 = 180°
∠8 = 180° - 135°
∠8 = 45°
∠6 = ∠8 (V.O.A)
∠6 = 45°
∠4 + ∠3 = 180°
∠4 + 135° = 180°
∠4 = 180° - 135°
∠4 = 45°
∠2 = ∠4 (V.O.A)
∠2 = 45°
Step-by-step explanation:
Given,
That ∠1 = 135°
So, ∠1 = ∠3 = 135° [∵Vertical opposite angles]
∠1 = ∠5 = 135° [∵ Corresponding angles]
∠5 = ∠7 = 135° [∵ Vertical opposite angles]
Then, ∠1 + ∠2 = 180° [∵ Linear pair]
=> 135° + ∠2 = 180°
=> ∠2 = 180° - 135°
= 45°
Also, ∠2 = ∠4 = 45° [∵ Vertical Opposite angles]
∠2 = ∠6 = 45° [∵ Corresponding angles]
∠6 = ∠8 = 45° [∵ Vertical Opposite angles]
Hence, ∠2 = 45°, ∠3 = 135°, ∠4 = 45°, ∠5 = 135°, ∠6 = 45° , ∠7 = 135° and ∠8 = 45° (Ans)