Math, asked by phuleswary1976, 9 months ago

please solve this fast and show step by step​

Attachments:

Answers

Answered by pulakmath007
24

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

 { \cos}^{2}  \theta \:  -  { \sin}^{2}  \theta \: =  \cos  2 \theta

2.

 \displaystyle \:  \:  { \tan}^{2}  \alpha  =  \frac{1 -  \cos 2 \alpha }{1 +  \cos2 \alpha }

GIVEN

 { \tan}^{2}   \alpha   =  { \cos}^{2}  \phi \:  -  { \sin}^{2}  \phi

TO PROVE

 { \cos}^{2} \alpha  \:  -  { \sin}^{2}  \alpha  =  { \tan}^{2}   \phi

PROOF

It is given that

 { \tan}^{2}   \alpha   =  { \cos}^{2}  \phi \:  -  { \sin}^{2}  \phi

 \implies \:  { \tan}^{2}   \alpha   =  { \cos} \: 2 \phi \:

So

 { \cos}^{2} \alpha  \:  -  { \sin}^{2}  \alpha

 =  { \cos} \: 2 \alpha  \:

 \displaystyle \:  \:  =  \frac{1 -   { \tan}^{2}  \alpha  }{1 +  { \tan}^{2}  \alpha  }

 \displaystyle \:  \:  =  \frac{1 -  { \cos} \: 2 \phi \:  }{1 +  { \cos} \: 2 \phi \:   }

 =  { \tan}^{2}   \phi

Similar questions