Math, asked by Anonymous, 7 months ago

Please solve this fast. Right answer will be marked as brainliest. Donot spam.

Attachments:

Answers

Answered by Cynefin
8

 \LARGE{ \underline{ \green{ \sf{Required \: answer:}}}}

We are given with an equation where we can see the variable is x. And we have to solve for the value of x.

GiveN:

  •  \rm{ \dfrac{x - 1}{x + 2}  +  \dfrac{x - 3}{x}  =  \dfrac{29}{20} }

Taking LCM in the left hand side of the eq.

  \rm{\dfrac{x(x - 1) + (x - 3)(x + 2)}{x(x + 2)}  =  \dfrac{29}{20} }

Expanding the parentheses in the num. and den.

 \rm{ \dfrac{ {x}^{2} - x +  {x}^{2}  -3x + 2x - 6 }{ {x}^{2} + 2x }  =  \dfrac{29}{20} }

Combining the like terms in the num.

 \rm{ \dfrac{2 {x}^{2}  - 2x  - 6}{ {x}^{2} + 2x }  =  \dfrac{29}{20} }

Cross multiplying,

 \rm{20(2 {x}^{2}  - 2x - 6) = 29( {x}^{2}  + 2x)}

Expanding the parentheses,

 \rm{40 {x}^{2}  - 40x - 120 = 29 {x}^{2}  + 58x}

 \rm{40 {x}^{2}  - 40x - 120 - 29 {x}^{2}  - 58x = 0}

Combining the like terms again,

 \rm{11 {x}^{2}  - 98x - 120 = 0}

Finding zeroes by using middle term factorisation,

 \rm{11 {x}^{2}  - 110x + 12x - 120 = 0}

 \rm{11x(x - 10) + 12(x - 10) = 0}

 \rm{(11x  + 12)(x - 10) = 0}

This means, when each of them is equated to 0, the value of x will be -12/11 or 10 (Answer)

Answered by Anonymous
103

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{Solve\:for\:x\:\:in:\:\dfrac{x-1}{x+2}+\dfrac{x-3}{x}=\dfrac{29}{20}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{x=10,\:x=-\dfrac{12}{11}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Find Least Common Multiplier of } x+2, x, 20

\bullet\:\:\mathrm{The\:LCM\:of\:}a,\:b\:\mathrm{is\:the\:smallest\:multiplier\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b \bullet\:\:

Compute an expression comprised of factors that appear in at least one of the factored expressions

=20x\left(x+2\right)

\mathrm{Multiply\:by\:LCM=}20x\left(x+2\right)

\dfrac{x-1}{x+2}\cdot \:20x\left(x+2\right)+\dfrac{x-3}{x}\cdot \:20x\left(x+2\right)=\dfrac{29}{20}\cdot \:20x\left(x+2\right)

20x\left(x-1\right)+20\left(x-3\right)\left(x+2\right)=29x\left(x+2\right)

\begin{array}{l}\text { Expand } 20 x(x-1)+20(x-3)(x+2): 40 x^{2}-40 x-120 \\\\\text { Expand } 29 x(x+2): \quad 29 x^{2}+58 x\end{array}

40x^2-40x-120=29x^2+58x

\implies40x^2-40x-120-58x=29x^2+58x-58x

\implies40x^2-98x-120=29x^2

\implies40x^2-98x-120-29x^2=29x^2-29x^2

\implies11x^2-98x-120=0

Solve with the quadratic formula

Quadratic Equation Formula:

For a quadratic equation of the form $a x^{2}+b x+c=0$ the solutions are

x_{1,2}=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$$

\mathrm{For\:}\quad a=11,\:b=-98,\:c=-120:\quad x_{1,\:2}=\dfrac{-\left(-98\right)\pm \sqrt{\left(-98\right)^2-4\cdot \:11\left(-120\right)}}{2\cdot \:11}

\begin{array}{l}x=\dfrac{-(-98)+\sqrt{(-98)^{2}-4 \cdot 11(-120)}}{2 \cdot 11}: 10 \\\\\\x=\dfrac{-(-98)-\sqrt{(-98)^{2}-4 \cdot 11(-120)}}{2 \cdot 11}:-\dfrac{12}{11}\end{array}

\large\boxed{\sf{x=10,\:x=-\dfrac{12}{11}}}

Similar questions