Math, asked by siddhartha27, 1 year ago

please solve this fast, will mark as brainliest !!!

Attachments:

siddhartha27: Birmingham ?
siddhartha27: london
siddhartha27: ok
siddhartha27: do yo know Mrwhosetheboss ? Its a youtube channel
siddhartha27: ok

Answers

Answered by TRISHNADEVI
11
✍✍HERE IS YOUR ANSWER..⬇⬇
================================

\underline{ANSWER}

\boxed{(1) \: 2 \sqrt[3]{a} - 4 \sqrt[3]{b} - \sqrt[3]{c} = 0}

If \: \: 8a - 64b - c = 24 \sqrt[3]{abc} \: \:, where \: \: \\ a \: ,\: b \: ,\: c \: \: ≠ \: 0 \:. \: Then \\ \\ (1) \: \: 2 \sqrt[ 3]{a} - 4 \sqrt[3]{b} - \sqrt[3]{c} = 0 \: \: \: can \: \: be \: \: true \: .

\underline{SOLUTION}

We \: \: know \: \: that, \\ \\ If \: \: x + y + z = 0 \: \: Then ,\\ \\ x {}^{3} + y {}^{3} + z {}^{3} = 3 xyz

Here ,\\ \\ 2 \sqrt[3]{a} - 4 \sqrt[3]{b} - \sqrt[3]{c} = 0 \\ \\ = > 2(a) {}^{ \frac{1}{3} } + [ - 4(b) {}^{ \frac{1}{3} } ] + ( -c ) {}^{ \frac{1}{3} } = 0

Let, \\ \\ 2(a) {}^{ \frac{1}{3} } = x \: \: , \: \:  [ - 4(b) {}^{ \frac{1}{3} } ]= y \: \:  and \: \: ( -c ) {}^{ \frac{1}{3} } = z

So ,\\ \\ x + y + z = 0 \\ \\ Therefore, \\ \\ x {}^{3} + y {}^{3} + z {}^{3} = 3xyz

So ,\\ \\ \:[2(a) {}^{ \frac{1}{3} }] {}^{3} + [- 4(b) {}^{ \frac{1}{3} } ] {}^{3} + [( -c ) {}^{ \frac{1}{3} } ] {}^{3} \\ \\ = 3 \times 2(a) {}^{ \frac{1}{3} } \times [- 4(b) {}^{ \frac{1}{3} } ] \times ( -c ) {}^{ \frac{1}{3} } \\ \\ => (2){}^{3}a + (-4){}^{3}b+(-c) = 24 (abc){}^{\frac{1}{3} } \\ \\ = > 8a - 64b - c = 24 \sqrt[3]{abc}

_______________________________

✝✝…HOPE…IT…HELPS…YOU…✝✝

siddhartha27: thank you very much
TRISHNADEVI: u r wlcm
Similar questions