English, asked by Ronakmangal189, 5 hours ago

Please solve this
fill in the blanks

Attachments:

Answers

Answered by siwachmanju080
1

Answer:

a)will b) are I think it was helpful

Answered by llJASMINEll
7

Answer:

I am in class 10th dear why are you asking dear do u want to say something

Let ,

\small \bf y = log_{x}(a) + log_{a}(x) + \bigg \{log_{x}(a) . log_{a}(x) \bigg \}y=logx(a)+loga(x)+{logx(a).loga(x)}

___________________________

▪To Calculate :-

\bf \pink{ \dfrac{dy}{dx} }dxdy

___________________________

▪Formulae Used :-

\begin{gathered} \maltese \: \: \: \bf log_{n}(m) = \dfrac{ log_{e}(m) }{ log_{e}(n) } \\ \\ \maltese \: \: \: \bf \frac{d}{dx} \: log \: x = \frac{1}{x} \\ \\ \maltese \: \: \: \bf \frac{d}{dx} \: \{ f(x) { \}}^{n} = n. \{f(x) \} {}^{n - 1} . \frac{d}{dx} \: f(x) \end{gathered}✠logn(m)=loge(n)loge(m)✠dxdlogx=x1✠dxd{f(x)}n=n.{f(x)}n−1.dxdf(x)

___________________________

▪Solution :-

\begin{gathered} \sf\text{ y }= log_{x}(a) + log_{a}(x) + \big\{log_{x}(a) . log_{a}(x) \} \\ \\ \sf= log_{x}(a) + log_{a}(x) + \bigg \{ \dfrac{ log_{e}(a) }{ log_{e}(x) } \times \frac{ log_{e}(x) }{ log_{e}(a) } \bigg \}\end{gathered} y =logx(a)+loga(x)+{logx(a).loga(x)}=logx(a)+loga(x)+{loge(x)loge(a)×loge(a)loge(x)}

\begin{gathered} \implies \sf y = log_{x}(a) + log_{a}(x) + 1\\ \\ \implies \bf y = \frac{ log_{e}(a) }{ log_{e}(x) } + \frac{ log_{e}(x) }{ log_{e}(a) } + 1\end{gathered}⟹y=logx(a)+loga(x)+1⟹y=loge(x)loge(a)+loge(a)loge(x)+1

Let ,

\begin{gathered} \sf A = \frac{ log_{e}(a) }{ log_{e}(e) } \\ \\ \sf B = \frac{ log_{e}(x) }{ log_{e}(a) }\end{gathered}A=loge(e)loge(a)B=loge(a)loge(x)

So ,

\begin{gathered} \sf \dfrac{dy}{dx} = \dfrac{dA}{dx} + \dfrac{dB}{dx} + \dfrac{d1}{dx} \\ \\ \implies \sf \dfrac{dy}{dx} = \dfrac{dA}{dx} + \dfrac{dB}{dx} + 0 \\ \\ \implies\bf \dfrac{dy}{dx} = \dfrac{dA}{dx} + \dfrac{dB}{dx}\:\:\:\:.\:.\:.\:\{i\}\end{gathered}dxdy=dxdA+dxdB+dxd1⟹dxdy=dxdA+dxdB+0⟹dxdy=dxdA+dxdB...{i}

We have ,

\begin{gathered} \sf A = \frac{ log_{e}(a)}{ log_{e} (x)} \\ \\ \sf A = log_{e}(a) \: . \: \frac{1}{ log_{e}(x) } \end{gathered}

⚜I am a flower ⚜

Similar questions