Math, asked by kalpitadebkrori054, 11 months ago

please solve this for me.​

Attachments:

Answers

Answered by Anonymous
5

Solution

8 \sqrt{ \dfrac{x}{x + 3} }  -  \sqrt{ \dfrac{x + 3}{x} }  = 2

Squaring on both sides

 \implies  \bigg(8 \sqrt{ \dfrac{x}{x + 3} }  -  \sqrt{ \dfrac{x + 3}{x} }   \bigg)^{2} =  {2}^{2}

 \implies  \bigg(8 \sqrt{ \dfrac{x}{x + 3} }  \bigg)^{2}  -   \bigg(\sqrt{ \dfrac{x + 3}{x} }   \bigg)^{2} + 2 \bigg(8\sqrt{ \dfrac{x}{x + 3} } \bigg) \bigg(\sqrt{ \dfrac{x + 3}{x} } \bigg) = 4

 \implies 64 \bigg( \dfrac{x}{x + 3}  \bigg)-   \bigg( \dfrac{x + 3}{x}    \bigg) + 16 \bigg(\sqrt{ \dfrac{x(x + 3)}{(x + 3)x} } \bigg) = 4

 \implies \dfrac{64x}{x + 3}-  \dfrac{x + 3}{x}   + 16 (\sqrt{1 }) = 4

 \implies \dfrac{64x}{x + 3}-  \dfrac{x + 3}{x}   + 16= 4

 \implies 16 - 4 =  \dfrac{x + 3}{x}  -   \dfrac{64x}{x + 3}

 \implies \dfrac{x + 3}{x}  -   \dfrac{64x}{x + 3}  = 12

Taking LCM

 \implies \dfrac{(x + 3)^{2} - 64x ^{2} }{x(x + 3)}  = 12

 \implies \dfrac{ {x}^{2} +  {3}^{2}    + 2(x)(3)- 64x ^{2} }{ {x}^{2} + 3x }  = 12

[ Because (a + b)² = a² + b² + 2ab ]

 \implies  {x}^{2} +  9  + 6x- 64x ^{2}   = 12( {x}^{2}  + 3x)

 \implies  - 63{x}^{2} + 6x + 9  = 12{x}^{2}  + 36x

 \implies  - 75 {x}^{2} + 6x + 9  -  36x = 0

 \implies  - 75{x}^{2} - 30x + 9  = 0

 \implies   - 3(25{x}^{2}  + 10x - 3)  = 0

 \implies 25{x}^{2}  + 10x - 3 = 0

Factorising the equation, we get

Splitting the middle term

 \implies 25{x}^{2}  + 15x - 5x - 3 = 0

 \implies 5x(x + 3) - 5(x  +  3) = 0

 \implies (x + 3)(5x - 5) = 0

 \implies x + 3 = 0 \quad or \quad 5x - 5= 0

 \implies x =  - 3 \quad or \quad 5x = 5

 \implies x =  - 3 \quad or \quad x = 1

[ Neglecting x = - 3 as it is not possible ]

 \implies \boxed{x = 1}

Hence the value of x is 1.

Similar questions